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1 INTRODUCTION 

Our ever-growing dependence on computer networks is accompanied by ever-growing 
concerns about the network’s vulnerability to information attacks and the dependability of the 
existing network security systems. Major threats primarily stem from increasingly sophisticated 
self-replicating malicious software. At present, more than 700 million computers are connected 
to the Internet and their numbers are growing rapidly [1]. Every year, thousands new public 
vulnerabilities in security systems are revealed, and at any given moment of time millions of 
vulnerable computers are connected via the Internet. 

Sophisticated adversaries detect and utilize vulnerable computers to carry out various 
attacks. Many attacks are performed in a completely automated fashion and spread throughout 
the Internet at the speed of light without regard to geographical and national borders. 
Technologies utilized by malicious software are becoming more and more complex. In some 
cases attacks are completely concealed and cannot be revealed without a thorough analysis 
delaying both detection and mitigation efforts. In many instances attackers intend to compromise 
computer network security systems, rendering them ineffective. Moreover, poly- and meta- 
morphism are commonly utilized by attackers to minimize the efficiency of traditional anti-virus 
software tools that are dependent on gigantic, continuously updated databases. Fortunately, 
Intrusion Detection Systems (IDSs) utilizing behavioral signatures to match malware activity 
rather than its binary structure are immune to this binary morphism. 

The research presented in this report is aimed at the development of semantic approaches 
to behavior analysis in a scalable dependable IDS system. It resulted in a signature based IDS 
approach that was implemented, tested and characterized. 

 Section 2 discusses the modern malware and associated trends, malware classification, and 
a review of the limitations of conventional anti-virus technologies. First, various types of modern 
malware, statistics and emerging trends in malware development are presented. Secondly, this 
chapter reviews modern anti-virus products and discusses limitations of technologies currently 
used to detect malware such as binary signatures, heuristic analysis, and behavioral detection. 

Section 3 presents taxonomy of the typical basic malware functionalities that could be 
attributed to the “essence” of malicious activity. In particular, self-replication mechanisms as 
well as malicious payloads are analyzed. Three types of the self-replication mechanism are 
discussed, including: binary self-replication, server-side replication, and client-side replication. 
Moreover, malicious payloads are classified and analyzed, including: persistence mechanisms, 
delivery and communication mechanisms, data acquire mechanisms, offensive payloads and 
others. 

Among the known malicious activities, self-replication is an example of a highly 
discriminative and indicative malicious functionality. Obviously, there is no reason for legitimate 
software to self-replicate, since it can be distributed by legitimate means (e.g. downloads and 
install, trial etc.). Hence, computer security researchers are very interested in self-replication 
phenomenology. 

It is important to be able to reliably detect self-replication as a specific functionality. 
However, before detecting it, it is reasonable that we should model self-propagation in order to 
investigate and estimate the possible impact of this functionality on network resources. Such a 
model would allow for selecting the most adequate means for both attack detection and 
mitigation. 
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Section 4 presents the developed signature based IDS approach. This approach detects 
malicious functionalities in the system call domain using generic and highly semantic signatures. 
Such an approach is superior to existing behavior based techniques in addressing behavioral 
obfuscations and multiple functionality realizations. Basically, the proposed IDS detects 
intrusions at the highest semantic level – the functional level, which is semantically higher than a 
simple behavior due to the fact that behavior is merely a manifestation of one of the realizations 
of functionality that could be obfuscated. While signature-based, behavior-based IDSs (BBIDS) 
have obvious advantages, however they could suffer from three interrelated problems: poor 
signature expressiveness, behavioral obfuscation and run-time signature matching inefficiency. 
The research presented in this chapter describes the development of novel, system call domain 
IDS that addresses both existing and future challenges of BBIDS. In particularly, we propose an 
approach to specify the functionalities of interest, specifically malicious ones, by using activity 
diagrams (AD) in terms of generic behavioral constructs. The resultant AD would incorporate 
multiple realizations of the specified functionality hence increasing the semantics and 
expressiveness of the signature. An AD signature would be automatically generalized to address 
existing and potential behavioral obfuscation techniques. Finally, a procedure is presented that is 
capable of automatic conversion of activity diagrams into colored Petri nets (CPN) defined in the 
system call domain, to be used by IDs for run-time recognition of the specified functionalities. 

Section 5 presents a comprehensive experimental evaluation of the proposed approaches 
that were implemented in a prototype IDS. An experimental evaluation of the described 
technology was conducted on the virtual network testbed at Binghamton University [2], [3]. The 
testbed was configured as a virtual network comprised of dozens of victim hosts represented by 
virtual machines with vulnerable versions of Windows1 OS and our prototype IDS. The IDS was 
evaluated on hundreds of legitimate programs and dozens of malware that had various types of 
replication engines and payloads. The experimental results indicated extremely low false 
negatives and false positives. Finally, we performed a series of experiments to determine the run-
time overhead induced by the IDS. This overhead was estimated based on established 
benchmarks. The results indicated that the IDS incurred less than 4% of the CPU utilization 
overhead. 

The results of this research were presented at the following conferences (proceedings) and 
journals: 

1. Military Communications Conference (three papers), MILCOM 2011, Baltimore, MD, USA 
2011 

2. European Symposium on Research in Computer Security (ESORICS), Athens, Greece 2010. 
3. Military Communications Conference, MILCOM 2010, San Jose, CA, USA 2010. 
4. International Conference on Security and Management, SAM’10, Las Vegas, NV, July 2010 
5. Conference on Future Challenges in Network Security (FCNS), Prague, Check Republic, 

June 2010 
6. International Conference on Security and Management, SAM’09, Las Vegas, NV, July 2009 
7. 27th IEEE International Performance Computing and Communications Conference, 

(IPCCC), Austin, TX, Dec. 2008 
8. Problems of Information Security. Computer Systems (Journal), issue 3, Moscow, Russia, 

2008 (in Russian) 
9. Journal of Information Assurance and Security, vol. 2, issue 2, pp. 107-116, 2007. 

                                                 
1 Windows is registered trademarks of Microsoft Corporation in the United States and other countries 
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10. Third International Symposium on Information Assurance and Security (IAS’07), 
Manchester, England, August 2007 

11. International Conference: “Mathematical Methods, Models and Architectures for Computer 
Networks Security”, Sept. 20, 2007, St. Petersburg, Russia. 
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2 MODERN SECURITY CHALLENGES TO COMPUTER SYSTEMS 

Malicious software presents the most prominent threat to modern computers systems. The 
first example of malware was a computer virus developed almost thirty years ago for Apple 
computers [4]. At that time, most of the early computer viruses were limited to self-replication 
and had no specific payload. Since then malware evolved from academic proof-of concepts in 
middle 1980s to script-kiddies attacks in late 1990s, and finally to underground market and 
targeted attacks since 2000 (e.g. Zeus botnet, StuxNet worm). As a result, today malicious 
software is used to achieve a wide range of adversary goals. This includes everything from 
remote access to local sensitive data to full control of segments of information infrastructure 
such as servers, network appliances and even industrial controllers. 

This chapter presets general discussion of the modern malware and their associated trends; 
malware classification; and review of the limitations of conventional anti-virus technologies. 

2.1 Description and Classification of Modern Malware 

Malicious software (malware) is software that is designed to secretly access a computer 
system without the owner's informed consent [5]. Malware is a general term meaning a variety of 
forms of hostile, intrusive, or annoying software or program code. 

This section describes various types of modern malware, the associated statistics and some 
emerging trends in malware development. Malware is classified according to well-known 
notations and terms formalized by the computer security community (e.g. anti-virus vendors) [6], 
[7]. Note that this section focuses on malware types only. Further discussion on malicious 
functionalities and behavioral taxonomy is given in the next chapter. 

Today, the cyber-security community distinguishes between the various types of malware 
depending on their main purpose or intentions [8], some of these are defined and described 
below. 

2.1.1 Viruses 

The first use of the term “computer virus” is attributed to Fred Cohen in 1983. Fred Cohen 
originally defined a computer virus as a program that can "infect" other programs by modifying 
them to include a possibly evolved copy of itself. Traditionally, viruses only infected the local 
host executable files during propagation. However, today viruses can self-replicate by infecting 
many file types such as MS Word files (macro virus), Adobe PDF files (script virus), script files 
etc. Also virus activity is no longer limited to a local host. A virus can also infect files located on 
network shares, cloud drives and removable media. 

2.1.2 Worms 

A worm is a form of self-propagating malware that spreads inter-host over the local/wide 
area network and also via the Internet. The main difference between a worm and a virus is that a 
worm transfers its binary image to the victim machine without injecting its code into any host 
files. While a virus, by definition, proliferates by injecting itself into a host file on the victim 
machine. 

Depending on the propagation vector, worms could be classified into the following 
categories [7]: 
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• E-mail worms. This worm sends itself or a link to its image as an e-mail attachment. 
• P2P worms. This worm proliferates via public P2P file sharing networks. 
• Network worms. This worm propagates to hosts by exploiting vulnerabilities in publically 

exposed services. Since such a worm does not require user action, it could spread very fast 
causing large scale epidemics. 

• Instant messaging and IRC worms. This worm sends a link to its image via instant 
messengers or IRC, e.g. ICQ or Skype. 

After getting deployed to the remote host, worms often establish various backdoors, 
disable security tools, and install bot agents. Once compromised, these systems become part of 
what is known as a “zombie” network. 

2.1.3 Trojans 

A Trojan horse is malware pretending to be benign or useful software. When activated, 
Trojans perform unauthorized actions such as collecting, modifying, and forging data. Unlike 
viruses and worms, Trojans by themselves do not self-replicate. Hence, Trojans are delivered by 
some type of self-replicating malware as a payload or by so-called downloaders. Also, Trojans 
can be delivered via a social engineering attack by convincing victims to download and execute 
their code. 

Depending on the actions performed, Trojans fall into the following classes [8]: 
downloaders, spyware, keyloggers, backdoors, dialers, ransom, proxy, clickers, and adware. 

Downloaders are small programs that download and install other malware such as adware 
and spyware. Some downloaders also configure the OS to run the downloaded malware during 
system startup. 

Spyware is a type of malware that steals sensitive data such as a user’s credentials, bank 
account information, web service passwords etc. Such data is transmitted to adversaries via 
various channels including FTP, e-mail and even covert channels (e.g. DNS reverse tunnel). 

Keyloggers monitor and record various system events such as mouse clicks and pressed 
keys. Usually, keyloggers are used by spyware to gather a user’s credentials. 

A backdoors is a specific type of malware that attempts to grant unauthorized external 
remote access to a host. It is usually achieved by rather simple techniques such as remote shell, 
but there are some sophisticated backdoors that may themselves have system functionality that 
enables remote system control. Backdoors are usually used to steal personal information 
including login details, e-mail addresses etc. Moreover, covert backdoors are frequently used to 
control botnets made up of compromised zombie machines. 

Clickers, Adware, Dialers and Ransom represent malware for profit that forces the user to 
pay money to adversaries or buy pay-per-use services without a user’s consent. 

2.2 State of the Art of Anti-Virus Technology: Limitati ons and Disadvantages 

In 1987, the German hacker Bernd Fix presented the first anti-virus software that was able 
to detect and neutralize the Vienna Virus [4]. Since then, the market for anti-virus products has 
received much attention, and has led to the development of more than sixty anti-virus products. 
In spite of such development, for the most part, anti-virus products still rely on old, binary 
signature based technology to detect malware [9]. This technology detects malicious software by 
matching file images to binary patterns of all known malware that are stored in gigantic, 
continuously updated databases. 
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In an attempt to avoid signature-based detection most sophisticated attackers currently 
utilize polymorphic and metamorphic worms that are able to continuously mutate, i.e. change 
their binary composition without changing their malicious payload. As a result, the number of 
binary signatures of malicious codes that need to be stored and utilized for successful attack 
detection continues to grow exponentially, see Figure 1 below. This trend indicates that in the 
near future virus detection will consume a significant percentage of a computer’s finite 
resources. At the same time, reliance on the known binary signatures implies that in principle it 
cannot detect new, previously unknown malware. 

 
Figure 1. Number of Binary Signatures of Malware (Source: Kaspersky Lab) 

To deal with unknown malware, advanced anti-viruses use heuristic analysis that utilizes 
generic signatures to match classes of malware. However, such technology generates false 
positives and has rather limited efficiency. Figure 2 shows that the detection rate of heuristic 
analysis is at most 65% and is only 40% on average [10]. 

On the other hand, there is an alternative to binary signature-based intrusion detection. 
Generally, malicious software and infected legitimate software demonstrate specific behavior 
patterns that are atypical for legitimate software. Some advanced anti-virus products such as 
Kaspersky, Symantec and ThreatFire perform dynamic analysis of program activity to detect 
malicious behavior. However, such products usually take into account only individual OS object 
operations and are also limited to a single process. In other words, such anti-virus products do 
not correlate the behavior of multiple processes and objects to recognize a complex malicious 
pattern. As a result, such systems are only able to detect primitive and obvious misuse such as 
access to a system file, starting a particular process or loading a device driver. While such a 
behavior could be exhibited by many types of malware, this same behavior is also exhibited by 
legitimate software (e.g. system tools). 
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Figure 2. Detection Rate of Heuristic Analysis (May, 2010) 

In our observation, behavior by itself is not malicious; however the goals or functionalities 
of the malware are malicious. It is very important to point out, that the total number of malicious 
functionalities is fairly stable, and the only thing that changes is how often particular 
functionalities are utilized (see Figure 3). Inventing a new malicious functionality requires 
significant effort and is typically beyond the means of most attackers. Consequently, when 
malicious code mutates, it implements the same malicious functionality in spite of the variations 
in its binary code. Moreover, developers of new computer worms are destined to utilize the same 
malicious functionalities again and again (for example self-replication engines). 

 
Figure 3. Utilization of Malicious Functionalities (Source: Trend Micro Inc.) 

Taking into account the above considerations, it is critical to detect complex 
functionalities, rather than merely simple behavior. Such functionalities may involve interrelated 
sessions of object operations. For instance, we propose to detect the following sophisticated and 
highly semantic functionalities: password theft, multipartite self-replication or self-concealing 
using third party rootkits. The complexity and high level semantics of these functionalities 
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allows for confident discrimination of maliciousness in the program activity with minimum false 
positives. 

In order to detect malicious functionalities, first we must define, classify and analyze 
existing and potential malicious functionalities. The next chapter is dedicated to the taxonomy of 
malicious functionalities which covers most known and conceivable malicious functionalities 
that each has a very distinctive footprint. 
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3 TAXONOMY OF MALICIOUS FUNCTIONALITIES 

3.1 Definition of Software Functionality 

Let us describe the software behavior and functionality execution in Microsoft Windows™ 
operating system (OS). This OS provides system recourses and services to processes through 
executive objects that are maintained in the Kernel (Figure 4). In order to access a particular 
resource or service a process creates a corresponding object such as a file, process, thread, 
memory section, etc [11]. Every object has its own set of operations which are exported to user 
mode processes through system services (system calls)2. In the user mode, such system calls can 
be invoked directly or more conveniently through subsystem API functions. 

 
Figure 4. Functionality Implementation at the System Level 

Processes invoke API functions or system calls in order to perform object operations 
(manipulations)3 that complete some semantically distinct action(s), such as writing data to a file 
or sending data to a specified IP address. Consequently, we define individual functionality as a 
combination of those actions that achieve a certain high-level objective. 

                                                 
2 In Unix based systems such services are called system calls, while in Windows they are called executive system services. 

Hereafter, we stick to system call term. 
3 Here, we use terms “Operation” and “Manipulation” interchangeably, because both of the terms are used extensively in the 

literature. 
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It is important to understand the difference between a functionality and behavior. The 
behavior of a process is what the process does at a given stage, while the functionality 
determines the semantic goals of the process. In other words, behavior simply manifests the 
realization of functionality. As a result the major limitation of the existing behavior-based 
specifications is that they can fail when dealing with multiple realizations of the same 
functionality. This motivated us to develop a novel specification free from this limitation. 

3.2 Taxonomy of Malware Replication Functionalities 

Today, major threats primarily stem from self-replicating malicious software such as 
worms and file viruses. Self-replicating malware has two basic components, a payload and a 
replication mechanism. The payload functionalities normally perform some malicious activity on 
the victim host, while the replication mechanism ensures its most essential feature, the self-
replication. While any set of functionalities can constitute a payload, most attackers inherently 
rely on existing self-replication engines. 

Self-replicating malware can be divided into three major classes: network worms, e-mail 
worms (trojans) and file viruses [12], [13]. While the replication mechanism is usually 
determined by the type of malware, some malware instances utilize multiple replication 
mechanisms; however, these malware does not introduce a conceptually new type of self-
replication. 

Based on the attack vector, one can distinguish between the following replication 
mechanisms: 

• Binary self-replication (used by file viruses) 
• Network based (server-side) self-replication (used by network worms) 
• Client side self-replication (used by trojans and e-mail worms) 
• These replication mechanisms are described in details in the following sections. 

3.2.1 Binary Self-Replication 

File virus replication mechanisms were analyzed in [3]. There are basic types of virus 
replication techniques: 

• Overwriting existing files (Overwriting viruses) 
• Creating new look-alike files (Companion viruses) 
• Attaching to existing files (Parasitic viruses) 
• Injecting itself to empty spaces in PE (Cavity viruses) 

An Overwriting virus replaces existing executable or its code section with the body of the 
virus. A Companion virus renames (or moves) an existing executable and replaces the original 
with a copy of itself. The virus then runs the victimized binary after executing its own body. A 
Parasitic virus infects an existing executable by injecting its code into the executable body and 
replacing code entry points. Cavity virus can inject itself to the PE header or unoccupied portions 
of PE segments. Such a virus does not change the overall length of the host file. 

The authors in [3] proposed tracking semantically primitive functional blocks such as file 
search, memory mapping, file copy etc., and to then attribute their combinations to a so-called 
Gene of Self Replication (GSR). However, a GSR is only defined for file viruses and it does not 
allow for tracing alternative realizations. Moreover, due to the token dynamics, the CP-net [14] 
recognition mechanism is more efficient than the one proposed in [3], i.e. state machines. 



11 
 

3.2.2 Network Based (Server-Side) Self-Replication 

Servers connected to the Internet usually expose services that clients can interact with. 
Moreover, most hosts in a local network provide several publically accessible services that 
potentially could be compromised. This includes services such as RPC DKOM, Remote Desktop 
etc. After the appearance of the first high-profile network worm in 2001 (Code-Red) that 
exploited a vulnerability in a server service (MS IIS) server-side vulnerabilities became the most 
convenient attack vectors for self-replicating malware such as network worms including Sasser, 
Welchia, Blaster etc. [15]. 

To estimate tendency of network worm generation and propagation engine utilization in 
modern worms, we analyzed 25 network worm families including: Sasser, Welchia, Blaster, 
Slammer and Mytob. The propagation engine type for each worm was determined based on the 
anti-virus databases as well as by reverse engineering and analyzing particular strains of the 
worms. It was observed that more than 60% of the worms use the “bind shell” engine. “Reverse 
shell” and “executable download and execute propagation” engines were shared by 30% of the 
worms. Less than 10% of the worms utilize other types of the engines such as thread injection, 
remote command execution, and others. 

 A typical “Bind shell” engine opens a network socket (port) and listens to the socket until 
the intruder is connected to the port. Then the connection is accepted and the shell code starts a 
command interpreter, for instance “cmd.exe”, such that inputs and outputs are tied to the socket. 
These actions cause the “cmd.exe” process to listen for commands and execute them. The 
previous three steps are performed by the exploited process as shell code. The final steps 
thencomplete the propagation. It could be seen that the attacking host simply passes commands 
to make the victim host download worm executable code and run it. 

The “reverse shell” engine is very similar to the bind shell. However, in order to avoid a 
firewall, the shell code automatically connects to the intruder, and instead of waiting for a 
connection from the intruder. From this point on, the remaining steps are identical. 

The “executable download and execute” engine perform the entire propagation in the shell 
code without post-activity as is performed in the first two engines. In this case, it simply creates 
a socket, establishes a connection to the intruder and retrieves a copy of the worm through the 
established channel. The shell code usually uses high level protocols such as http to download 
the worm, but sometimes it downloads a worm directly through the channel simply using 
transmission control protocol (TCP). 

The above considerations indicate that worms from the same family tend to share the same 
propagation engine(s). The number and type of propagation engines is limited. In the first stage 
of the propagation session, the worm shell code is executed by the compromised process. To 
achieve the propagation effect, the shell code has to utilize system resources via various API 
functions. As a result, each type of shell code has its own system call execution pattern. 

A new trend in shell code development can be attributed to so-called client side (one way) 
shell codes that provide access to the victim’s machine with a minimized system footprint. Such 
shell codes include: find socket, reuse socket, DNS reverse tunnel, and HTTP reverse tunnel 
[16]. 

Find and reuse socket shell codes do not create a new socket, they simply utilize the socket 
of the existing connection through which the victim process was exploited. These shell codes are 
implemented similarly to the standard Bind-Shell with the difference being that the socket is not 
created, but instead the code enumerates handle values and checks the remote port through the 
“GetPeerName” API. At the system call level the GetPeerName API is recognized as a command 
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to the AFD.sys driver with specific control code executed via the NTDeviceIOControlFile 
system call. 

The DNS reverse tunnel shell code implements a hidden channel through which the worm 
image is transmitted to the victim machine. In this case no dedicated connection is established, 
and no file or object download is performed (e.g. via HTTP). The only activity the victim host 
exposes is making DNS requests. These requests are similar to those that are frequently 
performed by any host connected to the Internet. After the shell code makes a DNS request to a 
malicious DNS server, the server sends a fake DNS response containing a small piece of worm’s 
binary code to the shell code. Then the shell code receives the worm image piece by piece, 
decodes it, reconstructs the code and eventually executes it. 

3.2.3 Client Side Self-Replication 

Historically, the majority of network worms propagate through server-side vulnerabilities, 
but over the recent years it has become increasingly difficult to use server-side attack vectors for 
the following reasons: 

• A move towards secure/hardened implementations of system and production software (less 
vulnerabilities on servers) 

• More frequent patch cycles for publicly accessible services 
• Prevention of remote code execution in critical services using techniques such as DEP4 

and ALSR5 [17]. Avoiding these techniques (e.g. return-oriented programming, heap 
spray) significantly increases exploit and shell code development time [18] 

• Utilization of network-based intrusion detection systems. 
• Network fragmentation that builds a defense in depth (firewalls, external vs. internal 

network vs. DMZ ) 

On the other hand, client-side attacks are quite a different story. These attacks exploit 
vulnerabilities in client applications, such as web browsers and office application suites, that 
process malicious data from servers. Today, client-side vulnerabilities are the most popular entry 
points for attacks. This is supported by the fact that, the vast majority of vulnerabilities (more 
than 93%) that have been exploited in recent years have been on the client-side [19]. These 
vulnerabilities are located in various applications, such as web browsers, file readers, office 
suites and ActiveX components. As a result, in recent years majority of the malware has been 
propagating via the following web attack vectors [20]: 

• Browser vulnerabilities 
• Adobe Flash vulnerabilities 
• ActiveX vulnerabilities 
• Adobe Acrobat Reader vulnerabilities 
• Apple QuickTime vulnerabilities 

                                                 
4 DEP – Data Execution Prevention is Microsoft implantation of “Write xor Execute” feature that does not allow 

for executing injected code (e.g. potentially stops buffer overflow exploit).  
5 ASLR – Address Space Layout Randomization. Process loader technique (feature) which arbitrary arranges the 

positions of key data areas, usually including the base of the executable modules (dll entry points) , heap, and stack, 
in a process's address space. ASLR prevents proper execution of an injected shell code. This technique was utilized 
by Microsoft for system processes containing critical services. User applications (e.g. MS Internet browser) did not 
use such technique due to compatibility reasons.  
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• 3rd-party plugins, widgets/gadgets, banner ads 
• RealPlayer vulnerabilities 

Since client-side attacks affect individual workstations that are located inside the perimeter 
protected by network security appliances such as firewalls and NIDS, such an attack could be 
viewed as an insider threat. Some attacks, such as drive-by install, represent normal behavior and 
are initiated by an unwary user. After obtaining control over the exploited client application, the 
attacking malware (shell-code) has enough system privileges to propagate itself. 

A client-side exploitation can be different from the classical server-side exploitation. This 
does not necessarily mean that remote code execution (e.g. buffer overflow), will occur, for 
instance a JavaScript could “legitimately” use an ActiveX component to overwrite a file that is 
scheduled to be executed by the OS itself. However, the functionality of the shell code chould be 
identical – namely, the delivery of malware. 

Due to the isolation of the workstation from the external network (i.e. firewalls, NIPS), 
client-side shell code is destined to use normal connections, protocols and services that are 
allowed by the network/host security policies. For instance, in the case of a web-browser attack 
vector, the shell code can use the same http session, that is used for normal data exchange, to 
transfer the malware binary. The client-side delivery mechanisms could be roughly classified as 
follows: 

• Drive-by install (social engineering attack) 
• Drive-by write 
• Drive-by download 

Drive-by install is an example of a social-engineering attack requiring cooperation from an 
unwary user [21]. Usually, a drive-by install is used for delivering special types of malware such 
as spyware and adware. This malware can be distributed using various scenarios including: 
convincing a user to download malware (e.g. fake flash player) from the malicious web-site (e.g. 
continual prompting); sending an email with malware attached; as a bundled and chained install 
with some other third party software; and finally via peer-to-peer installation. 

Generally, a drive-by install delivery is performed through a self-mailing engine that is 
used by e-mail worms that may have Trojans in their payloads. In this case, a typical self-mailing 
engine constitutes a particular functionality that performs at least two essential tasks: 

• Load the malware image into memory 
• Send the image as an attachment with the e-mail to the victim address 

While image reading (loading) is a trivial task performed by a standard subsystem API, 
sending an e-mail requires using a mail protocol such as: SMTP, ESMTP or SMPT-AUTH. The 
e-mail consists of a header and a body that may contain an attachment formatted according to the 
MIME standard. The message is sent to a mail relay server (or MTA) through SMTP. While 
message formatting does not involve any system calls (only simple memory manipulations), 
message sending utilizes network resources exported through an API (ws2_32.dll). While the 
SMTP functionality performed by any Mail User Agent (e-mail client) or MTA (mail exchange 
server) is absolutely legitimate, such software is not supposed to send its image as an attachment 
with the message that is being sent. 

The drive-by write delivery mechanism may use special vulnerabilities that allow for 
saving a file (e.g. picture). For instance, a shell-code may directly overwrite or infect a system 
file using JavaScript and vulnerable ActiveX exports. Another technique would be using 
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ActiveX components to modify the windows registry and execute malware. Clearly, such a 
technique requires having a malware binary that itself could be partially contained in the exploit 
data and then later be reconstructed by the shell code. 

Drive-by download propagation implies transferring the malware image using various 
available mechanisms. The shell code can use ActiveX (JavaScript) to download malware, or 
retrieve an image via an http channel using a high level API such as InternetOpenURL and 
InternetReadFile (wininet.dll). However, to physically transmit the file, all such high level 
functions eventually utilize standard API and system calls such as: socket, connect, send, recv, 
(ws2_32.dll). 

Another technique for downloading the malware, under the conditions of strict 
connectivity policy, is to utilize a so-called covert channel. A covert channel implies transferring 
data using system mechanisms that are not blocked or checked by existing network security 
appliances (e.g. firewalls, NIDS, web proxies) [16]. Such covert channels could be arranged by 
using already existing connections, for instance, finding and reusing an opened socket (i.e. 
socket reuse shellcode). Another way could be to use a DNS service to establish a so-called DNS 
reverse tunnel that was described previously. Analogously, one could use an ICMP reverse 
tunnel that works by sending an echo request packet to a remote malicious host. The remote host 
replies with another ICMP packet that contains a small part of malware binary code. This way a 
client can receive the entire malware image, piece by piece. 

3.3 Taxonomy of Malware Payload Functionalities 

Recent attacks on information systems demonstrate a steady increase in the quality and 
sophistication of newly deployed malware. To be effective, host defense technologies such as an 
intrusion defense/detection systems (IDSs) must cope with continuing advances in intrusive 
technologies. The net result is an escalating "arms race" between malware and the IDSs. 
Generally, malicious technology develops along two major directions: delivery mechanisms 
(new attack vectors, propagation hiding etc.) and persistence mechanisms, such as self-
concealment or self-protection. While the delivery mechanism is a critical part of malware, self-
propagation based delivery can successfully be detected and prevented as described in papers [3], 
[2]. A substantial part of today's malware does not self-propagate, instead it is delivered by 
downloading and running camouflaged Trojans. These are typically initiated by the legitimate 
behavior of an unwary user. Hence, detection of payload functionalities including the persistence 
mechanism becomes extremely important. 

After getting deployed on the victim host, malware runs its payload functionalities. 
Usually its payload corresponds to the malware type, e.g. downloader, dropper or backdoor. In 
our view, payload functionalities could be distinguished by their purpose according to the 
following categories: 

• Persistence mechanism (self-concealment, self-protection, etc.) 
• Delivery and communication mechanism (commands, software download, etc.) 
• Data collection / acquisition mechanism (key-logger, network sniffer, etc.) 
• Offensive payload 
• Other 

Malware persistence mechanisms have received significant attention since they allow for 
concealing and protecting deployed malware. Such technology represents a major challenge for 
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the IDS since it impedes the intrusion response. Table 1 presents the most popular persistence 
mechanisms including User level [22] and Kernel level techniques [23]. 

The delivery and communication mechanism is usually used by network bot agents to relay 
and execute control commands to a victim host. They are also used to fetch new updates for 
deployed malware. Some standard mechanisms are presented in table 1. 

The data acquisition mechanisms are typically used by spyware to mine the user’s sensitive 
information (e.g. user credentials) or user/host behavioral statistics (web surfing). This 
information is then transferred to the adversary via the communication mechanism. 

The offensive payload is the most malicious payload, andcan cause significant damage 
such as denial of network/server services, subversion of anti-malware services and windows 
blocker (back-mail malware). Table 1 summarizes the most infamous offensive payloads. 

Table 1. Payload Collection 
Payload 
category  

Functionality  Description 

Persistence 
mechanism 

Mimicry 
technique 

Camouflage malware image: 
• renaming its image 
• appending its image to victim legitimate image 
• external restructure of the image 

Injection based 

Inject malicious code into victim process: 
• Thread injection 
• Dll injection 
• Event spoofing 

Multipartite 
approach 

Multipartite approach: 
• Watchdog agents 
• Inter-process distribution of the activity 

Root persistence 

Kernel level techniques: 
• System call spoofing (SSDT substitution, malware resources hiding) 
• Non direct object manipulation (reparse point, shared memory) 
• DKOM (process hiding, driver concealment)  

OS service 
subversion 

Makes changes in the system to render security and administrative 
services useless: 
• Resets system restore points 
• Disable various security services (security, update, error reporting, 

firewalls and anti-viruses) 
• Spoof DNS service to block security content 

Registry setup Makes modifications in registry to arrange autorun of the malware image 
or compromise host security 

Delivery and 
communication 
mechanism 

Dropper 
Creates small binary which contains selected payloads and is not able to 
proliferate. 

Backdoor 
Provides remote unauthorized access to the host. This makes the host a 
“zombie” machine. To avoid firewalls, such mechanism may use several 
channels such as direct TCP, covered ICMP, covered DNS etc. 

System call proxy Executes system calls with attributes received from C&C center  
Downloader Periodically downloads update malware 

Spam engine 
Forms and massively sends e-mails potentially to contacts from local 
address book.  

Data acquire 
mechanism 

Credential stealer  Hidden module which monitors user’s activity to steal user credentials  
Key-logger  Intercepts and logs key strokes 
Traffic sniffer Records packets, acquires network statistics  
Web sniffer Records web surfing statistics 

Offensive DoS Performs Denial of Service (including OS lock) 
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payload Auto-dialer  Dials expensive phone calls causing financial loss for the victimized user 

Windows blocker Denies access to OS and data until a user pays a ransom 

Other 
Adware 

Added harmless (commercial) functionality in third party environment, 
e.g. toolboxes in IE. 

Rouge Fake anti-virus activity 

3.4 Functionalities of Next Generation Malware 

3.4.1 Targeted Attack 

A new trend in malware development is highly professional and targeted attacks that 
achieve very specific goals. One such example is the StuxNet worm that was the first publically 
known computer worm that targeted a specific industrial systems/processes. The ultimate goal of 
the worm is to alter/reprogram the control processes of a particular industrial plant. Exactly 
which one was targeted still remains unknown, however a majority of the attacks took place in 
Iran [24]. 

Due to the target specific nature of the worm, it employs several functionalities to conceal 
its activity and to help it keep a low activity profile. Such functionalities include: 

Controlled self-propagation that is achieved by limiting the number of generations of the 
worm – this prevents burst-like epidemics, helping it keep a low profile. 

The use of multiple attack vectors to self-propagate via USB removable drives and local 
network. The range of 0-day vulnerabilities that the StuxNet exploits allowed it to proliferate 
over various Windows™ OSs including Windows 2000, XP, Vista and Windows 7 [25]. 

The use of rootkits to hide the worm binaries. To remain stealthy the rootkits are digitally 
signed with valid, but stolen certificates. 

The use of centralized command and control (C&C) server and a decentralized peer-to-
peer (P2P) mechanism to allow infected machines to request updates. 

The targeting nature of the worm is evident due to the fact that the worm uses various 
techniques to precisely identify the system to be attacked. The target consists of specific Siemens 
hardware and software, such as certain Programmable Logic Controllers (PLCs) (6ES7-315-2 
and 6ES7-417), and the WinCC SCADA (Step7 Sematic Manger component)6. 

Another functionality is the modification of the WinCC SCADA communication library 
(s7otbxdx.dll ). This allows a targeted PLC to be infected by injecting worm’s blocks of STL 
code and also hides the injected code from human operators. 

The injected malicious STL code basically changes the PLC behavior. In particularly, the 
malicious code checks for incoming data to PLC (could be sensor data) and may modify and 
post-process the data [24]. Theoretically, this may alter feedback response of the control system 
itself that may drive the plant to unstable phase and eventually physical damage. 

It is interesting to note that a particular block of code - block DB8061 is automatically 
generated during the infection phase and its contents depends on the data that is in targeted PLC 
[24]. Analysis revealed that this particular block of data is not present in the StuxNet and is 

                                                 
6 PLC is a stand-alone industrial class digital computer that controls equipment of a plant to maintain industrial 

processes along with desired specifics. A Sematic PLC runs assembly like code that controls the plant. SCADA 
system is PC software that allows a human operator to monitor, remotely control plant’s equipment as well as to 
update the code on PLC. 
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generated when the PLC with a specific code is found. This way the malware authors are able to 
hide certain behavioral details of the malicious PLC code. 

In summary, a targeted attack such as the StuxNet worm not only has a Windows rootkit 
functionality but also PLC rootkit functionality that is concealed from the human operator. This 
example clearly indicates that there has been a fundamental shift in the security perimeter such 
that it is no longer limited to personal computers and has clearly been expanded to include 
industrial computing facilities. 

3.4.2 Behavioral Metamorphism 

Today binary morphism is a common feature of modern malware. Given the extensive 
development of behavioral based IDS, it is expected that adversaries will employ behavioral 
metamorphism as the next step in offensive information warfare. 

Currently, behavioral metamorphism has not received much attention, and as such has not 
been studied or defined in the literature, however, an approach for behavioral obfuscation is 
given in [14]. This approach implies the use of several techniques to alter the realization of the 
given functionality so that it would have a different footprint in the system call domain. These 
techniques obfuscate behavior by using single process or multiple processes, i.e. a multipartite 
approach. 

From the perspective of the system call domain, this behavioral metamorphism could be 
viewed as dynamic functionality obfuscation. The difference here would be that the obfuscation 
is performed at moment of functionality implementation (compilation), and that the 
metamorphism is performed dynamically during the execution stage. 

As with intra-process obfuscation, behavioral metamorphism could be achieved by 
randomly switching between alternative system mechanisms (e.g. network pipes, sockets, file 
mapping etc.) to perform elementary operations such as data transfer or file data access. 

Similar to multipartite obfuscation [14], another approach for behavioral metamorphism 
would be dynamic scattering of malicious functionalities among different benign processes so 
that none of the processes would have a consistent system call pattern. 

3.5 Conclusions 

This chapter described the basic functionalities of typical malware that could be attributed 
to the essence of malicious activity. In particularly, we reviewed typical self-replication 
mechanisms as well as several malicious payloads. Three types of the self-replication mechanism 
were discussed including binary self-replication, server-side replication and client-side 
replication. Additionally, malicious payloads were classified and analyzed including persistence 
mechanisms, delivery and communication mechanisms, data acquisition mechanisms, offensive 
payloads and others. 

Understanding malicious functionality is critical for the successful detection of malware 
activity. The remaining chapters describe novel technologies for malware detection based on 
identification of malicious functionalities as anomalies and generic behavioral signatures. 
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4 SIGNATURE BASED BEHAVIORAL DETECTION 

Computer networks, being a critical component of the national infrastructure, are 
continuously subjected to information attacks. The most devastating attacks are perpetrated by 
the deployment of self-replicating malicious software that propagates through different media 
and uses multiple attack vectors. Recent information attacks demonstrate a steady increase in the 
quality and sophistication of newly deployed malware. To avoid signature-based detection by 
most commercial IDSs, modern malicious software employ polymorphism and sometimes even 
metamorphism. Fortunately, IDSs that effectively utilize behavioral signatures to match malware 
activity, rather than its binary structure are immune to binary morphism. 

 
Figure 5. Architecture of Proposed IDS 

While behavior-based IDSs (BBIDSs) have obvious advantages, they can suffer from three 
interrelated problems: poor signature expressiveness, behavioral obfuscation and run-time 
signature matching inefficiency. Signature expressiveness determines the success of an IDS in 
detecting new realizations of the same malware. Since most malware incidents are derivatives of 
some original malware, a successful signature must capture invariant generic features of the 
entire malware family. At the same time, the signature should be expressive enough to reflect 
most of the possible malware realizations. Behavioral obfuscation is an emerging threat that, 
given the extensive development of BBIDSs, is expected to become a necessary and trivial 
feature of future information attacks [26]. 

The behavior of a program can be viewed as a manifestation of the functionalities 
implemented in the program. A particular functionality is malicious if it performs some specific 
activities intended for adversarial purposes. Discovering a malicious functionality in any 
software qualifies it as a malware. Hence, the detection of malicious functionalities becomes 
crucial and sufficient for confident malware detection. 
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We developed a novel system call domain IDS that addresses existing and future 
challenges to BBIDSs. In order to achieve higher signature expressiveness, we proposed to 
specify the functionalities of interest, specifically malicious ones, by creating activity diagrams 
(ADs) in terms of both standard system objects and abstract behavioral constructs named 
functional objects. The utilization of functional objects and operations provides the necessary 
level of generalization, yet it preserves discriminatory properties of the specification. As a result, 
such an AD would incorporate multiple realizations of the specified functionality, hence 
increasing the semantics and expressiveness of the signature. 

We investigated possible approaches to behavioral obfuscation including inter-process 
(multipartite) techniques. To mitigate obfuscation, we proposed an automatic generalization of 
the AD specifications. We developed a set of generalization algorithms that automatically 
augment signatures, making them resilient to several behavioral obfuscation techniques, such as 
object relocation and multipartite activity. 

Finally, we developed a procedure capable of automatic conversion of activity diagrams 
into the system call domain using Colored Petri nets (CPNs). These are intended for run-time 
recognition of the specified functionalities in the IDS. Our experiments showed that a CPN is 
highly dependable and efficient for recognizing specified functionalities in the flow of system 
calls with data. 

The system architecture of the proposed IDS is shown in Figure 5. In the learning phase, 
an expert designs ADs representing known malicious functionalities. The Specification 
Generalizer module automatically augments the original ADs making them more generic and 
resilient to obfuscations. The CPN Constructor generates a low-level and a high-level CPN by 
processing the relevant ADs. The low-level CPN recognizes individual subsystem-level object 
operations in the system call domain and aggregates the system call information for processing at 
the higher level. The high-level CPN recognizes the specified functionalities in the object 
operations domain. While simulating the CPN, The Recognizer accesses the information flow 
tracer to feed data dependencies for particular transitions in the CPN. 

As shown in Figure 5, at the detection phase the Object Operation Recognizer receives 
system calls and utilizes the low-level CPN to identify subsystem object manipulations. The 
Functionality Recognizer then utilizes the high-level CPN to assemble object operations into 
particular functionalities. 

The contributions of this research are as follows. 

1. Increasing signature expressiveness and simplifying the process of signature specification: 

• Formal functionality specifications using ADs are defined at the abstract object level. Each 
specification allows for capturing multiple alternative realizations of a given functionality 

• Separation of the specification domain (abstract OS objects) from the detection domain 
(system calls). The abstract specification domain allows an expert to concentrate on 
conceptual realizations of a functionality omitting certain implementation details. The 
detection domain allows for efficient functionality detection in the system call flow by 
executing the respective CPN that was obtained from the specification. 

• Automation of the IDS signature generation process. It includes computer aided AD 
specification design, automatic AD generalization, AD visualization and finally automatic 
translation of the AD to a CPN that is used as a signature in the intrusion detector 
(Functionality Recognizer) 

2. Mitigation of possible behavioral obfuscations: 
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• Analysis and classification of possible behavioral obfuscation techniques 
• Automatic generalization of functionality specifications thus making them invulnerable to 

behavioral obfuscation 

3. Achieving high efficiency of signature matching: 

• Automatic translation of an AD specification into a CPN that recognizes the functionality 
in the system call domain 

• Efficient CPN simulator for recognizing specified functionalities in the flow of system 
calls and flow of utilized data/information (available at http://apimon.codeplex.com as an 
open source project). 

• Prototype of information flow tracing engine (implemented in IDA Debug) 

To demonstrate our approach we implemented it in a prototype IDS and tested it by 
detecting several malicious functionalities that are employed by network worms and bots, 
including self-replication engines and various malicious payloads. 

4.1 State of the Art in Signature Based Behavior Detection 

Current commercial intrusion detection systems such as antivirus packages primarily use a 
signature based approach for efficiency reasons. However, recent information attacks 
demonstrate steady increase in the quality and sophistication of newly deployed malware. To 
avoid detection by most commercial antiviruses, modern malicious software is at least 
polymorphic and sometimes even metamorphic. This results in an exponential increase in the 
number of signatures that need to be maintained by modern anti-viruses software (close to 5 
million as of today, Kaspersky). Apparently, this reality drives traditional antiviruses to a dead 
end. It is interesting, however, to note that the number of distinctive malicious functionalities 
(behaviors) has not changed. This is due to the fact that malware continues to use the same 
functionalities to achieve the same goals. Hence, it is reasonable to detect functionalities rather 
than binary patterns. Moreover, dynamic IDS utilizing behavioral signatures to match malware 
activity cannot detect binary morphism. 

The success of a dynamic, behavioral based IDS is determined by two aspects: the 
expressiveness of the signature specification language and the efficiency of the recognition 
mechanism. Moreover, usability of an IDS depends on the clarity and degree of abstractness of 
the specification language. Below we survey the existing behavioral specification languages and 
discuss the advantages of our approach. Then we show how our system is different and better 
than similar, existing system call domain IDSs. 

4.1.1 State-Transition and CPN Specifications 

Kumar and Spafford developed the IDIOT system that utilizes a variant of a CPN, termed 
Colored Petri Automation (CPA), to detect UNIX system misuses [27]. Compared to a CPN, 
CPA lacks concurrency, local condition variables and arc generative expressions. While 
concurrency may be not critical for detection, condition variables and arc generative expressions 
are vital for structural simplicity of the CPN recognizing our AD specifications. Moreover, our 
ADtoCPN procedure represents AD variables in CPN arc expressions. 

Helmer et al. utilized a hierarchical CPN and Software Fault Trees (SFT) as behavioral 
specification for a distributed IDS [28]. First, the CPN structure is obtained from SFT 
specifications. Next, an expert defines CPN semantics (arc and guard expressions) that are 
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responsible for processing monitored system/network events. The spirit of their approach is close 
to ours in that it implies a separation of the specification and execution domains. However, the 
authors in [28] did not address generalization and behavioral obfuscation issues, which are our 
main contributions. 

Ho et al. proposed a Partial Order Sate Transition Analysis Technique (POSTAT) to 
specify both local and distributed attack scenarios that are matched by CPNs [29]. The authors 
also give insight for creating a normalcy specification through POSTAT. 

Eckmann et al. proposed the STATL language for specifying misuse signatures in the 
domain of interest (host or network) [30]. In STATL transitions represent executed activity and 
states represent the status of particular system objects. While STATL allows for specifying quite 
generic activity, the specifications must also reflect execution semantics making the signature 
description cluttered and complex. In contrast, we do not specify execution semantics in our AD 
specification, since the AD is ultimately translated into the CPN that possesses the execution 
semantics. 

The problem of most state transition (ST) techniques is that the signature serves as a 
specification and a recognition mechanism at the same time. Hence, ST signatures are specified 
in the corresponding execution domain, e.g. system calls, network low level activity, shell 
commands, etc. For instance, for host based detection, an expert has to specify how transitions 
should process system calls invoked by malicious activity. Consequently, the specification would 
be overloaded with implementation details making it hard to create and verify. In contrast, we 
specification domain from the execution/detection domain. We specify functionalities at a high 
level (object operations) and we detect specified functionality at a low level (system calls). As a 
result, our specifications are quite readable and succinct, reflecting only critical malicious 
activity at a high/abstract level, while omitting low level implementation details. In particular, in 
our system an expert does not have to bother about how a CPN processes monitored system calls 
to recognize the specified behavior, because a CPN’s structure and semantics are automatically 
built from a rather generic AD specification that could be defined in terms of abstract functional 
objects. 

In summary, our approach differs from the above methods in the following aspects: 
First, the specifications in the above papers do not formalize behavior in the domain of our 

interest, i.e. system object manipulations; therefore such specifications are not directly suitable 
for automatic processing. In contrast, our AD formalism is defined in the object operation 
domain, thus allowing for automatic processing and generalization. 

Second, the authors utilize a CPN as a behavioral specification language, however we 
utilize a CPN solely as a recognition mechanism. In [2] we discovered that functionality 
specification through a CPN in the system call domain is tedious and hardly feasible for complex 
cases, hence, we developed a simple and generic AD formalism for a functionality specification. 
Afterwards, our ADtoCPN procedure translates the generic AD to the system call domain with a 
CPN serving as a recognition model. 

Finally, our AD based specification is generic due to the use of functional blocks that 
abstract certain system implementation details yet provides enough agility for fine tuning of the 
specifications. 

4.1.2 Declarative and Algebraic Specification Languages 

Examples of declarative languages are LAMBDA [31], ADeLe [32] and Sutekh [33]. 
Specifications based on such languages define patterns of actions involved in an attack, such as 
the system pre and post conditions defined as a set of high level predicates and then mapping 
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between the actions and observable system events manifested by the attack actions. While such 
languages can express fairly generic attack scenarios, the complex scenario descriptions would 
require specifying many abstract predicates that would have to be identified by the detection 
mechanism. Runtime detection of such predicates may impose high overhead, and post alarm 
verification of the predicates could be unfeasible due to changes in the system state [31]. In 
contrast, we do not specify pre-conditions, because validity of the system patterns is verified by 
CPN at runtime by examining system call outputs. 

The aforementioned declarative languages allow for relating attacks to one another by 
matching the post-condition of an attack with the pre-condition of another one. Our approach 
also allows for including one AD as a functional object to the specified AD. At the CPN level 
this would be realized as hierarchal CPNs. 

The language of the CARDS [34] system introduces an abstract system view that allows 
distributed hierarchical attack specifications to be defined in the domain of abstract events. The 
detection language SHEDEL [35] takes advantage of both algebraic and state-transition 
approaches. As with [34], the SHEDEL specifications are explicitly defined at the abstract event 
level. 

Declarative languages are advantageous over state-transition specifications in their ability 
to describe signatures at the pure abstract level, omitting operational details related to the attack 
execution domain. To overcome this inherent limitation of ST languages, we proposed so-called 
functional objects that serve as a system abstract level on which AD signatures could be 
specified. 

Unlike state-transition specifications, most declarative and algebraic specifications do not 
posses execution semantics. For the system call domain, IDSs based on declarative specifications 
require a recognition mechanism that can explicitly match system calls with signatures. As the 
result an IDS’s scalability ultimately depends on the efficiency of the recognition/matching 
algorithm. Usually runtime pattern matching is performed through some sort of state machine or 
rule based detector as in [33]. 

However, ST models are more efficient for handling multiple instances of the same 
pattern. If a pattern is observed more than once and each instance is yet incomplete, a state 
machine has to accommodate extra states for each instance of the pattern to trace them in 
parallel. In contrast, a ST model represents an executed event pattern as one token residing in the 
corresponding place that allows for processing of multiple pattern instances with low overhead. 
Moreover, in the CPN, the necessary attributes propagate as token fields that allow for relating 
system calls by process and thread ID. This makes it possible to recognize an inter-process 
activity. Consequently, ST signatures are executable in the event domain. With ST the detection 
becomes the execution, and it should be faster than signature-event matching. Based on the 
above arguments, we believe that state-transition specifications are more preferable to 
declarative languages with respect to scalability and efficiency. 

Our AD specification can be directly converted to a recognition mechanism configuration, 
i.e. high level CPN. As a result, in our case, the recognition mechanism (CPN) incorporates the 
signature in its execution semantics ensuring low detection overhead. In other words, the 
detection becomes the direct execution of a CPN, hence no cross-matching for signature vs. 
event has to be performed. 



23 
 

4.1.3 System Call Domain Specifications 

The system calls present a perfect domain for behavioral based misuse detection because 
system calls are executed in a safe Kernel mode and monitoring them is much more resilient 
against user mode malware. 

Publications [36], [37], [38], and [39] propose tracing sequences of system calls to reveal 
misuse in OS object manipulations that are indicative of malicious activity. These methods 
discard the semantic relationships between object manipulations. A few attempts to deduce this 
semantic information on the level of primitive functional blocks [36], [37] failed to define a 
complete picture of the process behavior. PC Tools ThreatFire antivirus [38] allows the user to 
specify rules that describe only individual operations on objects such as process, file, etc., 
facilitating the detection of primitive and obvious misuse such as system file access, or starting a 
particular executive object. In contrast, our approach allows for the recognition of complex 
functionalities (such as self-mailing) that involve interrelated sessions of object operations. 

Publications such as [40], [41], [3], and [42] target dynamic behavior analysis. The 
methodology presented in [42] describes the detection of virus activity through tracing system 
call events with an emphasis on the order of events without functional context. In contrast, our 
approach allows for specifying both patterns of interrelated manipulations and primitive 
functionalities. The Dynamic Code Analyzer (DCA) approach allows for constructing a so called 
“gene of self-replication” from primitive object operations and activity blocks, but it lacks an 
efficient recognition mechanism [3]. 

Authors in [41] utilize behavior graphs that is in fact an extension of the malware 
specification graphs presented in [40]. Our work is different/advantageous over [40] and [41]. 
First, in [40], specification matching is performed through static analysis and implies mapping to 
some sort of a call flow graph of the tested executables. Obviously, such behavior graphs do not 
address execution semantics, and could not be utilized as a run-time recognition mechanism. In 
order to recognize the specified behavior in [41], the authors mention the use of a behavior 
matching algorithm, unfortunately they do not formalize the algorithm itself. In particular, it is 
unclear how they might handle multiple system call chains. In contrast, as mentioned above, a 
CPN effectively handles multiple chains due to the use of token dynamics. Second, the 
specification in [41] can define alternative realizations, but their behavior graphs are constrained 
to a single process. In contrast, our AD allows for correlating operations invoked by different 
processes, thus we can specify malicious inter-process and inter-host activity. Finally, the 
authors in [41] did not analyze and address possible behavioral obfuscations. At the same time 
they did not propose a solid behavior formalism, hence it not feasible to automatically process a 
specification. In [41] an expert is responsible for generalization of the specifications, for 
instance, to avoid handle duplication that could significantly complicate the design process. In 
contrast, we formalized functionality in the object operation domain. This formalization allows 
for the automatic processing of AD specifications to address possible behavioral obfuscations. 
We understand that we addressed a rather limited set of obfuscations, but given the flexibility 
and fidelity of our functionality formalization, developing new generalization algorithms for 
anti-obfuscation should be feasible for an expert. 
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4.2 Functionality Definition and Specification 

4.2.1 Formalization of the Specification 

Before formalizing functionality specification, let us inspect functionality from the OS 
perspective as presented below. The MS Windows OS provides system recourses and services to 
processes through executive objects maintained in the Windows Kernel. In order to access a 
particular resource or service, a process creates a corresponding object such as a file, process, 
thread, memory section, etc [11]. Every object has its own set of operations which are exported 
to the user mode processes through system services (system calls). In the user mode, such system 
calls are invoked directly or more conveniently through subsystem API functions. 

Processes invoke API functions or system calls to perform object operations 
(manipulations)7 that complete some semantically distinct actions, such as writing data to a file 
or sending data to a specified IP address. Consequently, we define individual functionality as a 
combination of actions that achieve a certain high-level objective. It is important to understand 
the difference between a functionality and behavior. The behavior of a process is what the 
process does at the particular stage, while the functionality determines semantic goals of the 
process. In other words, behavior simply manifests the realization of functionality. As a result, 
the major limitation of the existing behavior-based specifications is that they fail when dealing 
with multiple realizations of the same functionality. This motivated us to develop a novel 
specification that is free from this shortcoming. 

Note that processes may utilize both user level objects exported by the windows 
environment subsystem, such as Socket, Memory Mapping etc., and kernel level objects 
exported by the object manager, such as File, Named Pipe, Memory Section, etc. For user level 
objects, we consider subsystem level operations exported by API functions of subsystem 
libraries (such as kernel32.dll, ws2_32.dll). However, each subsystem level object is based on a 
kernel level executive object. 

Table 2 features a simple functionality, “Remote Shell”. This functionality creates a 
backdoor allowing an attacker to remotely execute system commands. Remote Shell has at least 
two possible realizations: Bind Shell and Reverse Shell. Both realizations create the “cmd.exe” 
process with input and output buffers (hStdInput, sStdOutput) being set to a connected port. The 
difference between these realizations is that the Bind Shell accepts a connection via named pipes 
and Reverse Shell connects to the attacker via sockets. Both realizations invoke the 
CreateProcess API with specific flags that allow for using socket/pipe handle as an input/output. 
Ultimately, this makes the command interpreter listen to incoming commands and execute them. 

                                                 
7 Here, we use terms “Operation” and “Manipulation” interchangeably, because both of the terms are used extensively in the 

literature. 
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Table 2. “Remote Shell” Realization 

 

Consider requirements for specifying functionality. Based on the above example, [40], and 
[41] we formulate the following requirements for the functional specifications: 

1. The specification must define the control flow for object operations. It must support 
conditional branching and concurrent execution. Conditional branching allows for 
specifying alternative realizations that may utilize different objects and operations; 
however, they achieve the same goal determining the functionality. For instance, two 
realizations in Table 2 utilize two different objects: “Named Pipe” and “Socket”. 
Concurrent execution allows for specifying independent object manipulation sessions, that 
could be executed in any order. However, the sequence of dependent operations must 
remain intact within the session. For instance in the Bind Shell realization (Table 2, left 
side), there are two independent operation sessions: create inbound pipe and get it 
connected (APIs 1 and 3) and create outbound pipe and get it connected (APIs 2 and 4). 
Since these two sessions are independent, the API functions (1, 2 and 3, 4) could be 
invoked in any order, as long as API 3 follows API 1 and API 4 follows API 2. 

2. The specification must define data/information flow among object operations. This 
requirement allows for specifying how output attributes of operations become the inputs of 
consequent manipulations. An attribute data flow determines the discriminatory power of 
the specification. For instance, with “Remote Shell” functionality, we have to show that 
“Process” object is created with STARTUPINFO.hStdInput and 
STARTUPINFO.hStdOutPut, i.e. attributes set to the socket handle. We should point out that 
data may be passed by value (data flow) or by information (information flow) [43]. 
Information flow between source and destination attributes indicates that the value of the 
destination is a transformation of the value of the source. In addition to the above two 
requirements, we introduce a third one that overcomes certain limitations in [41] that are 
related to multi-processes activity. 

3. The specification shall not be constrained to the context of one process. This allows for 
specifying and relating operations of different processes. In fact, this allows for specifying 
inter-process functionalities. 

The specification must offer enough expressive power and convenient graphical notation to 
simplify its design. Many specifications provide graphical notations such as state 

Bind Shell realization Reverse shell realization 

1.  h_In=CreateNamedPipe( 
 dwOpenMode= PIPE_ACCESS_INBOUND 

SecurityAttributes.bInheritHandle=TRUE); 

2.  h_Out=CreateNamedPipe( 
 dwOpenMode= PIPE_ACCESS_OUTBOUND 

SecurityAttributes.bInheritHandle=TRUE); 

3.  ConnectNamedPipe( h_In); 
4.  ConnectNamedPipe( h_Out); 
5.  CreateProcess(“cmd.exe”, 

bInheritHandles = TRUE, 

STARTUPINFO.dwFlags = STARTF_USESTDHAND, 

STARTUPINFO.hStdInput= h_In, 

STARTUPINFO.hStdOutput= h_Out);  

1.  s=socket(); 
2.  connect(s, 

sockaddr.s_addr=Attacker_IP 

sockaddr.sin_port=Attecker_port); 

3.  CreateProcess(“cmd.exe”, 
bInheritHandles = TRUE, 

STARTUPINFO.dwFlags = STARTF_USESTDHAND, 

STARTUPINFO.hStdInput= s, 

STARTUPINFO.hStdOutput= s); 

 STARTUPINFO.hStdOutput= hSock); 
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diagrams/machines, simple flowcharts, and workflow diagrams. However, a state machine is a 
uniprocess model that does not meet Requirement 3 and cannot directly express data flows as per 
Requirement 2. Flowcharts do not support concurrent execution and do not meet Requirement 1. 
However, a workflow diagram such as a UML Activity Diagram (AD) can generally meet the 
above requirements. Consider the formalization of an AD in terms of an OS object operation for 
the purpose of functionality representation. 

A basic UML AD is a semantically weighted directed graph: 

G= (�����,����,	
����) (1) 

where = ∪Nodes State Pseudo . 

The set State  contains state nodes that represent executed activities; it also contains 
Initial  and Final nodes that represent the beginning and end of the process. The set Pseudo  
comprises pseudo state nodes that control the execution flow. Pseudo state nodes include 
decision/merge (for conditional flow branching), and fork/join (for concurrent flow execution). 
The set Guards  contains guard expressions (for conditional branching) that represent the 
semantic weight of the corresponding edges. 

Consider the “Remote Shell” functionality in Table 2. Figure 6 depicts an AD of the 
functionality in the graphical (left side) and analytical (right side) forms. According to UML 2.x 
standards, the graphical notation displays decision/merge nodes (a, d) as diamonds, and fork/join 
nodes (b, c) as bars. We also assigned a sequential index to each node for explanatory purposes. 
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Figure 6. Activity Diagram of the “Remote Shell” Functionality 
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The AD contains seven state nodes and four pseudo-state nodes. The state node set 
includes four created object instances (Nodes 1, 3, 5, 7) and three operations (Nodes 2, 4, 6) on 
these objects. The pseudo-state nodes determine control flow of the functionality. The decision 
node “a” starts two alternative realizations of the functionality. The left branch (Nodes 1-2) 
represents the first step of the Reverse Shell realization, while the right branch (Nodes 3-6) 
represents the first step of the Bind Shell realization. Node 7 is the common step for both 
realizations. Note that the first step of the Bind Shell realization (Nodes 3-6) has two 
independent sessions (Nodes 3-4 and 5-6). 

This graphical notation is convenient for an expert designing a specification. However, the 
analytical representation is crucial for automatic processing of the specification. The analytical 
form of “Remote Shell” functionality shown in Figure 6 (right side) is very consistent with the 
UML AD formalism (1). The only modification we made was the inclusion of the Vars  
component that represents a set of local variables. Next we provide a generic explanation of all 
of the components of our formalism (the detailed formalism of the AD specification is given in 
Appendix A). 

The functionality specification is defined as an AD tuple: 

( )F= Nodes,Arcs,Assign,Vars
 (2) 

where 
Nodes is a multi-set defined in line 2 (Figure 2). It consists of State  and Pseudo  
nodes. As defined in line 3, there are two types of State nodes: Instances  and 
Manipulations . Each Instance node represents an object created and operated on in 
the context of the functionality, and its attributes. Line 7 shows the set of Instance nodes 
for the “Remote Shell” functionality. The set includes four nodes corresponding to the 
following objects: socket (Node 1), two named pipes (Nodes 3 and 5) and the process 
(Node 7).8 Line 7 indicates that each object is defined with the attributes used in the 
corresponding API that is creating the object. Each Manipulation node represents an 
object manipulation with its appropriate parameters. Line 8 shows the Manipulations set 
for “Remote Shell”. This set includes three manipulations: a connect socket (Node 2), 
and two connect named pipes (Nodes 4 and 6). 
Arcs is a set of directed arcs connecting the AD nodes. As defined in line 4, the arcs 
could be either of two types: Handle flow and Control flow. Handle flow arcs 
correspond to the execution flow with handle inheritance. A handle arc indicates that 
the destination operation (node) utilizes the same object handle as a source operation 
and is executed right after the source. In other words, the handle arc passes the handle 
of the source node to the destination node. For instance in Figure 6, the arc between 
Nodes 1 and 2 is a handle arc. It passes the handle of the socket created in Node 1 to the 
connect operation in Node 2 (this indicates that the socket from Node 1 is operated on at 
Node 2). To distinguish the handle arcs from control arcs, we display the handle arcs 
beginning with rectangle. 
Control Flow arcs define the control flow without handle inheritance. An arc from this 
set indicates the execution order and does not imply any data binding (via handle or 
attribute). For instance, the arc between Node “d” and Node 7 is a control arc that does 
not transfer any handles, simply showing that Node 7 should be executed right after the 

                                                 
8 In the brackets, we show the node index as presented in the graphical form. 
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two sessions (Nodes 1-2 and Nodes 3-6). In order to transfer data between nodes, 
variables are used. For instance, pipes or socket handles are transferred to Node 7 
through variables V1, V2. 
Assign is a function that binds variable assignment expressions to corresponding 
arcs. Line 11 shows the definition of such a function. The function indicates that 
variable V1 is assigned with a handle that was utilized in Node 2 or Node 3. 
Vars is a set of local variables that are used to define data flow. Utilization of local 
variables with an assignment expression allows for specifying a data flow between 
object operations (the second specification requirement). To specify an information 
flow, an expert should use transformation notation T() as depicted in Appendix A. Note 
that it is possible to define informational dependency explicitly as well as implicitly. 
Explicit information flow implies specifying a formal mapping between source and 
destination. Implicit flow does not specify any mapping and simply states that the 
destination value should at least partially depend on the source value. 

To address the third specification requirement each State node is assigned a unique index 
of the process that performs the manipulation represented by the node. Note that in Figure 6, 
“Remote Shell” is defined as an intra-process functionality, hence, all the operations are invoked 
by the same process, and every State node of the AD has the same process index which is 1 (see 
line 2). 

 From Figure 6, one can see that the graphical representation of an AD is much more 
revealing than the analytical representation; however, both representations are formally identical. 
In the rest of the paper, the graphical representation will be used for explanatory purposes, while 
the analytical representation will be used in specification processing algorithms. 

4.2.2 Specification Abstraction 

The detection success of our system highly depends on how comprehensive the 
specification is. If an expert misses a functionality realization, the system will be prone to false 
negatives and miss an attack vector. Each specification must be as generic as possible. It should 
abstract certain implementation details enabling experts to concentrate only on conceptual 
realizations. This is accomplished by the introduction of so-called functional objects that 
represent some complex but rather standard OS functionalities/mechanisms such as Inter-Process 
Communication (IPC), File Download, etc. Note: a functional object abstracts several alternative 
realizations of the particular OS functionality by encapsulating the necessary Windows objects 
utilized in these realizations. Each functional object has a set of operations representing certain 
high-level activities. When specifying an AD, experts may create and manipulate functional 
objects like ordinary Windows objects. Table 3 shows the set of functional objects facilitating 
data transfer. This set is just an example and is far from being complete, however, it 
demonstrates the expressiveness of our approach, namely the ability of operating on abstract 
objects by other objects. For brevity, we discuss only a few functional objects. 

Table 3. Functional Objects for Data Transfer 
Functional object name Based on objects  Operations Attributes (input => output) 

GenericFile File, 

File Mapping 

Create FileName 

Read BufferLength => Buffer 

Write FileName, Buffer 

RemoteIPC Socket, Pipe Create EndPoint (server, client), ID => Type, Handle 
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MailSlot Wait Type, Handle 

Recv Type, Handle => Buffer 

Send Buffer, Type, Handle => Buffer 

LocalIPC GereicFile, 

FileMapping 

RemoteIPC 

Create EndPoint (server, client), ID => Type 

Recv =>Buffer 

Send Buffer 

FileTransfer 
GenericFile 

RemoteIPC 

Create FileName, RemoteHost => Type, FileHandle, IPCHandle 

Send (Type, FileHandle, IPCHandle) 

Recv (Type, FileHandle, IPCHandle) 

Object “GenericFile” abstracts file access operations; it encapsulates both the “file” object 
and “file mapping” object. Object “RemoteIPC” represents an IPC resource for inter-host data 
transfer. It abstracts three alternative IPC mechanisms: socket, named pipe and mailslot. The 
“RemoteIPC” object exports the following operations: Create , Wait , Recv  and Send. The 
ADs for these operations are shown in Appendix B in figures B-1, B-2, B-3 and B-4. Some 
operations have input and output attributes. For instance, the operation “RemoteIPC Create” 
requires two input attributes: Endpoint class (either server or client), and EndPoint ID (host IP 
and Port for the socket and a name for the pipe/mailslot). The operation returns two outputs: 
EndPoint type (socket, pipe or mailsot) and a handle value of the corresponding object. The 
operation Wait(h)  waits for an incoming connection to the newly created IPC endpoint with 
handle h. 

Note that from the expert’s perspective, the utilization of such functional objects is 
transparent. For instance, when using RemoteRPC in a specification, the expert should not make 
any assumptions on how a malware will perform IPC, through a socket, pipe or mailslot. Such a 
transparency is best exemplified by FileTransfer operations. Table 2 indicates that FileTransfer 
operations are based on sheer functional objects such as GenericFile and RemoteIPC. This 
demonstrates the generalization power of the proposed specification formalism. Armed with such 
functional objects, an expert can build quite generic specifications yet preserve discriminatory 
properties that would leave little room for detection evasion. 

4.3 Behavioral Obfuscation 

The discriminatory power of a behavior signature (functionality specification) defined by 
an expert could be quite subjective and may exclude some of the realizations of the functionality. 
In addition, an attacker may perform some sort of behavioral obfuscation to evade detection. To 
address this issue, we developed a set of algorithms that automatically generalize (augment) the 
specification of the functionality. In the rest of the section, we will discuss possible behavioral 
obfuscations then we introduce the generalization algorithm and show how it addresses various 
obfuscation techniques. 

4.3.1 Behavior Obfuscation Techniques 

By utilizing functional objects, experts may specify most of the realizations of the 
functionality. Then it would be difficult for an attacker to discover yet another conceptually 
different realization utilizing different Windows objects. However, to evade detection, an 
attacker does not have to implement a completely new realization. He may simply obfuscate a 
known realization in such a way that it would break the specification. We distinguish inter-
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process and intra-process approaches to obfuscate a realization without affecting the 
functionality. Inter-process obfuscations utilize multiple interrelated processes that, at high level, 
jointly perform a particular malicious functionality. Intra-process obfuscation locally alters a 
realization of the functionality while preserving its behavioral semantics. 

First, consider possible inter-process approaches to behavioral obfuscation. 

1. Utilization of legitimate third party utilities to perform a r equired activity. A malicious 
process may run third party utilities to execute some important tasks that may be a part of 
the functionality. In this way, the process executes the functionality without performing 
some key object manipulations involved in the task. For instance, a file virus usually 
searches for executables using the “FindFirstFile” and “FindNextFile” API. Instead, the 
virus may utilize the system command interpreter (e.g. “cmd.exe”) to retrieve a list of 
executable files in a folder and then access the files one by one. 

2. Distribution of the functionality among several processes a.k.a. multipartite approach. 
A multipartite malware consist of several agents that perform coordinated activity to achieve 
a common goal. Such malware can distribute a malicious functionality among several 
processes by injecting its code into active benign processes or by creating new ones. Then 
the combined activity of these processes will perform an inter-process malicious 
functionality. A real life example of such a malware is a KeyLogger which is described in 
the next section. Another example is a File Virus that consists of two processes. The first 
process opens an executable file and passes the file handle to the second process. Then the 
second process attaches the code from the first process to the opened victim file. Neither 
process performs a typical malicious functionality individually: the second process does not 
open the victim file and does not inject its code, while the first process is replicated into the 
victim file without performing write or self-access operations. 

Now let us consider intra-process obfuscation approaches. 

1. Object relocation and duplication. Since a functionality may be constrained by a particular 
object name (e.g. file name), an attacker may change the name of the object before 
manipulating it. For instance, an attacker can copy, rename or move a file before 
manipulating it. In addition, a malware may duplicate an object handle in the middle of the 
manipulation sequence to break system call binding. Additionally, an attacker may access 
objects through symbolic links instead of handles. 

2. Non-direct object manipulation. This is achieved by specific, low-level system tricks such 
as utilization of non-trivial OS resources that allow for accessing objects either in a non-
trivial way or through a “middleman” object. For instance, an attacker can create reparse 
points or can access files by their streams. He may also add an alternative path to a target 
file through relinking system calls. Such activities are performed only through Kernel 
objects using system calls. 

4.4 Specification Generalization, Anti-Obfuscation 

In the system architecture presented in Figure 5, the “Specification Generalizer” module 
addresses the above obfuscation techniques. Effectively, this module attempts to fill the expert’s 
experience/attention gap, thus alleviating limitations related to the human factor. The module 
applies a set of generalization algorithms that automatically augment a given AD to make it less 
prone to obfuscations. Herein, we propose the following generalization algorithms: 
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TraceFiles – Augments the given AD with functionalities tracing the renaming and 
relocation of all files involved in the specification. This algorithm addresses the third obfuscation 
technique. 

TraceHandles – Augments the given AD with functionalities that trace object handle 
propagation among processes, which requires tracking handle duplication and the IPC used for 
handle transfer. This addresses the first three obfuscation techniques. 

TraceProcesses – Augments the given AD with functionalities that track process 
generation, remote code injection and inter-process coordination. This involves detecting several 
realizations of code injection including remote thread based and remote hook based injection. 
The upgraded AD would be able to relate object manipulations performed by multiple processes. 
This algorithm mitigates the first and the second obfuscation techniques. 

To address the forth obfuscation approach, one does not need any post-processing of the 
AD in the generalization stage. Instead, we can simply extend functional objects with the 
necessary semantics that would trace low-level objects involved in the obfuscation. This results 
in the obfuscation being resolved at the stage of specification, rather than automatic post-
generalization. In particular, we add reparse points and file streams to the “GenericFile” 
functional object. 

While augmenting an AD, each of the generalization algorithms incorporates special 
functionalities, termed generalization functionalities that trace certain activity involved in a 
particular obfuscation. Table 4 describes the generalization functionalities, whose ADs are given 
in Appendix C. Table 4. lists some functionalities that maintain certain global variables that 
qualify the traced activities, e.g. generated processes, duplicated files or established IPC 
channels. 

We describe each of the generalization algorithms based on their pseudo-code, where we 
utilize several primitive functions  defined in Appendix D and generalization functionalities as 
defined in table 4. 

Table 4. Generalization Functionalities 
Functionality  Updated 

variable 

Description 

FileRelocation FList Accepts a file name as input and updates a FList variable which a dictionary 

indexed by file names. Each element of FList is a list containing names of 

duplicates of the input file indexing the element. Such duplicates could be 

derived by copying, moving or renaming of the original input file or any of its 

duplicates. 

ProcessGeneration 

CodeInjection 

PList These two functionalities trace process generation and inter-process code 

injection and constantly update the global variable PList. PList is a list containing 

the PID of the descendant (created or being injected) processes (up to a given 

generation limit) that originated from the initial process that starts an AD. 

HandleDuplication DupP 

DupH 

Traces handle duplication and constantly updates two global variables: DupP and 

DupH. 

DupP is a dictionary indexed with the value of the initial handle produced at 

object creation. Each element of the dictionary is a list containing PIDs of the 

processes possessing duplicate handles derived from the handle indexing the 

element. 

DupH is a two dimensional dictionary indexed by value of the original handle 
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and PID. Each element of the dictionary is a list of handles possessed by indexing 

PID and derived from the indexing handle. For instance, 

DupH[H1][P1]={H2,H3} means that handles H2, and H3 were derived from the 

original handle H1 and are possessed by the P1 process. 

LocalIPC 

Establishment 

IPC_P 

IPC_H 

Traces Local IPC establishment and constantly updates two global variables 

IPC_P and IPC_H. 

IPC_P is a dictionary indexed by ID of the IPC. Each element of IPC_P is a list 

of PIDs of the processes that own endpoint handles (including duplicates) of the 

IPC with ID indexing the element. For instance, IPC_P[id1]={PID1,PID2,PID3} 

means that IPC, identified by id1, has endpoints which handles are possessed by 

processes PID1, PID2 and PID3. Note that some IPC could serve as data share 

points, hence they may have multiple endpoints, for instance a file or a shared 

memory. 
IPC_H is a two dimensional dictionary indexed by IPC ID and PID. Each 

element of the dictionary is a list of endpoint handles (including duplicates) that 

are possessed by indexing PID and shared by IPC with ID indexing the element. 

For example, IPC_H[id1][PID1]={h1,h2,h3} means handles h1,h2,h3 represent 

endpoints of the IPC with id1 ID and are possessed by a process with PID1 ID. 

TraceFiles  pseudo-code is given below (see listing 1). The algorithm iterates over 
operations and instances presented in an AD (line 1). If an operation has “file name” as an 
argument (line 2), the procedure adds “FileRelocation” functionality to the AD (line 6). Note: the 
function AttList(x) returns a list of attribute names for the input operation x. 

While adding a parallel functionality is trivial, it is not obvious where to insert 
“FileRelocation” so that file tracing does not interfere with the rest of the original functionality. 
Thus, we insert a parallel flow with “FileRelocation” in the following way: if the target file name 
is a constant string, i.e. it is independent from other operations of the AD, we start the parallel 
flow right after the initial  node; if the file name is a variable, we start the parallel flow right after 
the node where the variable is assigned for the last time; finally, we join the “FileRelocation” 
parallel flow with the original AD right before the node that is performing the operation on the 
target file. 

Listing 1. Trace Files Algorithm 

{ }

Algorithm

Input: - An activity diagram specification

Output: GenerilizedAD

1.  AD.Instances AD.Manipulations

2.  

Operation

lpFileNa

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
∈ ∪

AD

foreach :

if

TraceFiles

( )( )
( )

( )( ) ( )

AttList

3. : GetAttributeValue , ;

4.  

5. AD.initial;

6. AddParallelFunct A

me Operation

TargetFileName Operation lpFileName

isVariable TargetFileName RelocStartNode GetAssignNodeTargetFileName

RelocStartNode

∈

=

=

=

:

if :

else :

( )( )
( )

D,FileRelocation , , ;

7. SetAttributeValueExpression , ," [" "]" ;

TargetFileName RelocStartNode Operation

Operation lpFileName lpFileName in FList TargetFileName+ +  
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In the algorithm, the parallel flow with “FileRelocation” functionality is added by the function 
AddParallelFunct(Origin,New,Start,Merge) (see Appendix D). It adds an AD named New to an 
AD named Origin as a parallel flow that starts right after the node Start and joins it to the AD 

Origin just before the node Merge. The node Start is determined in lines 4 and 5. If the file name 
is a variable, the node Start is defined through GetAssignNode function (line 4). Function 

GetAssignNode(x) returns the node whose output arc has an assignment expression for variable 
x. Line 7 modifies the AD to make it consistent with the AD formalism (2) given in Section 3. 

TraceHandles pseudo-code is given below (see listing 2). In the code, line 1 
introduces the “HandleDuplication” functionality as a parallel flow to the original functionality. 
Lines 2-8 constitute a loop that iterates over all object instances of the AD so that for each 
instance, a new element in DupH dictionary is initialized with the instance PID and Handle 
(lines 3, 4). This would allow “HandleDuplication” functionality to trace handle duplicates of the 
current object instance. Line 6 iterates over object operations performed on the current object 
instance. For each object operation, the algorithm redefines the PID and Handle expressions so 
the operation may utilize any duplicated handle belonging to the original object instance. 

Listing 2. Trace Handles Algorithm 

( )

Algorithm 

Input: - An activity diagram specification

Output: Generilized

1. AddParallelFunct AD,HandleDuplication,AD.initial,AD.final ;

2

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

AD

AD

TraceHandles

( ) { }( )
( ) { }( )

( )

.  AD.Instances

3. SetAssignExpression OutputArc ,"DupH[ ][ ] " ;

4. SetAssignExpression OutputArc ,"DupP[ ] " ;

5. CreateNewVar OutputArc ,"

Object

Object Handle PID Handle

Object Handle PID

HandleVarName Object Handle

∈

=

=

=

foreach :

( )
( )

( )
( )

" ;

6.  GetObjectOperations AD,

7. SetNodePIDExpression ,"PID in DupP[" "]" ;

8. SetAttributeValueExpression , ," in DupH[" "][ ]" ;

Operation Object

Operation HandleVarName

Operation Handle Handle HandleVarName PID

∈

+ +

+ +

foreach :

 

TraceProcesses addresses the first and the second obfuscation methods. In the first 
obfuscation, a malware runs an external utility to perform some tasks. As a result, the external 
utility has to utilize the OS resources the same way as the malware. In other words, malware 
simply outsources its operations or functionalities to the utility. We can recognize the outsourced 
functionality in the utility’s behavior using our specifications. Consequently, in the specification 
some object manipulation sessions must have a PID tag assigned to the PID of the utility. If the 
utility has started, we must record the PID of the utility process and assign the PID in the object 
operation sessions that it outsources. 

From the above perspective, starting a utility to perform a part of the malicious 
functionality represents a multipartite approach. Hence, the first and the second obfuscation 
techniques should be addressed similarly: by tracing the functionality distribution among several 
processes. This requires tracking processes generated by the malware as well as processes to 
which malware injected its code (infected). Then we attribute object operations to the generated 
processes and infected processes. 

TraceProcesses algorithm introduces “ProcessGeneration”, “CodeInjection” and 
“LocalIPCEstablishment” to the input AD. It also introduces the IPC required for coordinating 
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multipartite agents and/or communicating with the utility. To reduce the false positive rate we 
additionally trace data transmission between processes that represent technical yet vital activity. 
For instance, a process retrieves (reads) data through an object that represents data source, and 
then this data or its informational dependency is transferred (written) through another object, 
called a data sink (see Table 5). Distributing this activity in such a way that one process would 
access a source object and another process would access a sink object requires using the IPC 
responsible for data transmission from the source process to the sink process. Such distributed 
functionality in fact implements an inter-process information link between source and sink 
objects (recourses). 

For the sake of clarity, in table 5 we present OS/functional objects and their corresponding 
operations that could be used for data source and sink. Note that some objects share the same 
source/sink operations. 

Table 5. Source and Sink Operations 
Objects  Source 

operation 

Sink 

Operation 

Based on API 

Source operation Sink Operation 

File, Pipe, MailSlot Read Write ReadFile.kernel32, WriteFile.kernel32 

Socket Recv Send recv.ws2_32 send.ws2_32 

Registry  ReadValue WriteValue RegGetValue.Advapi32.dll RegSetValueEx.Advapi32.dll 

RemoteIPC, LocalIPC Recv Send   

Below we give pseudo-code for TraceProcesses  algorithm (see listing 3). Initially the 
algorithm introduces three functionalities (lines 2-4), LocalIPCEstablishement, 
ProcessGeneration and CodeInjection (see Table 4). The functionalities are incorporated through 
AddParallelFunct function that adds a functionality to the AD as a parallel flow to the entire 
original activity. In line 5, the algorithm iterates over all objects of the input AD and changes 
their PID assign label to “PID in PList”. This means that a PID must belong to the global list 
PList that contains PIDs of the children processes derived from the original malicious process or 
its children (see Table 4). 

Lines 6-20 constitute the main loop that locates source-sink operations (Table 5) and 
introduces the data transmission functionality between source and sink processes. Line 6 iterates 
the overall operations of the AD. If an operation is a sink (line 7), then the algorithm obtains a 
writable buffer/“pBuffer” attribute value. If the bBuffer attribute value is a variable (checked in 
line 9), the algorithm obtains the node that assigns the variable (line 10). Such an assigning node 
is viewed as a data source and data is transferred to the sink operation through the SinkBuffer 
variable. Next, the algorithm introduces IPC between a source process and a sink process. To 
achieve this, the algorithm adds send and recv operations as a parallel flow (lines 10-14) between 
the node assigning the variable (source node) and the current operation writing the assigned 
variable (sink node). Lines 15-20 set PID and attribute expressions of the newly introduced recv 
node and the current sink operation node, so that the two operations belong to the same process. 
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Listing 3. Trace Processes Algorithm 

{ }

Algorithm 

Input: - An activity diagram specification

Output: Generilized

1. Sinks Write,Send,WriteValue

2. AddParallelFunct AD,LocalIPC

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
=

AD

AD

TraceProcesses

( )
( )
( )

Establishment,AD.initial,AD.final ;

3. AddParallelFunct AD,ProcessGeneration( ),AD.initial,AD.final ;

4. AddParallelFunct AD,CodeInjection( ),AD.initial,AD.final ;

5.  AD.Objects SetNod

ThisPID

ThisPID

Object∈foreach : ( )

( )
( )

( )

ePIDExpression ," in PList" ;

6.  AD.Operations

7. Sinks

8. , ;

9. isVariable

10. GetAssignNode ;

11.

Object PID

Oper

Oper

SinkBuffer GetAttributeValue Oper bBuffer

SinkBuffer

BuffAssingNode SinkBuffer

AssignPID

∈
∈

=

=

foreach :

if :

if :

( )( )
{ } { }( )( )
( )( )

CreateNewVar OutputArc ," " ;

12. AddParallelNode AD,Send , , , , , ;

13. CreateNewVar OutputArc ," "

VarName BuffAssingNode PID

NewSendNode PID AssignPIDVarName pBuffer SinkBuffer BuffAssingNode Oper

IPCIDVarName NewSendNode ID

=

=

=

( )
( )

;

14. AddNextNode AD,Re (), ;

15. SetNodePIDExpression ," in IPC_P[" "]" ;

16. SetAttributeValueExpression , ," in IPC_H[" "][

NewRecvNode cv NewSendNode

NewRecvNode PID IPCIDVarName

NewRecvNode Handle Handle IPCIDVarName PID

=

+ +

+ +( )
( )( )

( )( )
( )

]" ;

17. CreateNewVar OutputArc ," " ;

18. CreateNewVar OutputArc ," " ;

19. SetNodePIDExpression ," : " ;

20. SetAttributeValueExpre

RecvBufferVarName NewRecvNode pBuffer

RecvPIDVarName NewRecvNode PID

Oper PID RecvPIDVarName

=

=

= +

( )ssion , ," " ;Oper pBuffer pBuffer RecvBufferVarName= +  

To demonstrate our generalization algorithms, we tested them with a simple functionality 
that uploads a file through the IPC. We utilized Visual Paradigm for UML software [44] to 
design the “File Upload” functionality, see Figure 7. Then we ran the prototype of a 
Specification Generalizer module (Figure 5) that automatically generalized the functionality AD 
using all three algorithms. Figure 8 shows the AD of the augmented (generalized) functionality. 
Note that Visual Paradigm designer, with minor manual alignments, automatically produced both 
AD layouts of Figures 7 and 8. It can be seen that in our prototype, the entire process of AD 
generalization is completely automated including computer aided AD design, automatic 
generalization, and finally visualization of the resultant AD. 
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Figure 7. File Upload AD 

As per the example in Figure 7, one can see the “File Upload” AD that has two 
independent sessions such as IPC establishment (Nodes 3-5) and reading a file (Nodes 1, 2). 
After establishing an IPC, a buffer is received through the IPC and written to the opened file. 
Node 6 represents some additional activity not related to data variables of the functionality. Node 
7 sends the buffer with the file content via the established IPC. Note that in this AD, we utilized 
only functional objects and manipulations, hence covering most of the realizations of the “File 
Upload” functionality. 

In the generalized AD (Figure 8), it could be seen that HandleDuplication, 
ProcessGeneration and IPCEstablishment functionalities are introduced in the original 
functionality as independent sessions. Since the name of the uploaded file is the input parameter, 
the Specification Generalization has introduced “FileRelocation” functionality right before the 
file open operation (Node 2). In Nodes 4 and 6, global handle dictionaries (DupH, DupP) are 
initiated with IPC object handle. HandleDuplication (Node 13) traces handle duplication and 
updates the dictionaries. Node 6 accepts a connection to the IPC server endpoint. One can see 
that in the process of generalization, the TraceHandles algorithm has modified attributes of 
several operations: in Nodes 3 and 6, PID the assignment was set to “PID in DupP[H1]” 
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expression which means that the PID of the operation must belong to the set of PID’s that posses 
the original handle H1. 

.  
Figure 8. Generalized File Upload AD 

The TraceProcesses algorithm introduced an IPC in Nodes 12, 7 and 8 that transfers 
a buffer from the source process (reading the content of the file to be uploaded) to the sink 
process (sending the buffer to a remote host). One can see that IPC nodes are introduced as an 
independent session from the other activity (Node 9). 

Figure 8 indicates that the generalized AD is structurally more complex than the original 
AD (Figure 7). However, with respect to the number of state nodes it is comparable to the 
original. At the same time, the generalized AD addresses all three obfuscations presented above. 
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This shows that the proposed anti-obfuscation generalization results in an acceptable complexity 
penalty. 

RemoteIPC
EndPoint=Server

ID=[PortID]

Process

pszImageName in Flist[“cmd.exe”] 

 bInheritHandles = TRUE

STARTUPINFO.dwFlags = 

STARTF_USESTDHANDLES

STARTUPINFO.hStdInput in DupH[H1][PID][0]

STARTUPINFO.hStdOutput in DupH[H1][PID][1]

5

c

d

2
1RemoteIPC

EndPoint=Client

ID=[Host_Addr,PortID]

1

FileRelocation

a

e

PID in

PList

PID in

PList

4

Handle 

Duplication

6

Process 

Generation
PList=ThisPID

L=GenLimit

7

b

f

Wait
Handle in 

DupH[H1][PID]

3

PID in 

DupP[H1]

H1:=Handle

Flist[“cmd.exe”] = 

“%SYSTEMPATH%\cmd.exe”

PID in 

DupP[H1]

H1:=Handle

 
Figure 9. Generalized AD for Remote Shell 

Furthermore, we applied the above algorithms to generalize the AD presented in Figure 6. 
The generalized AD is shown in Figure 9. One can see that fork node “b” starts two sessions. 
The left session (nodes 1-3) corresponds to the first steps of “Reverse Shell” and “Bind Shell” 
realizations. The right session is represented by one operation (Node 4), “FileRelocation” that 
traces “%systempath%\cmd.exe” file and outputs a list of files that descended from it. 

The “Remote Shell” realization is started in Node 1. It creates a RemoteIPC object as a 
client that connects to the attacker host. The “BindShell” realization creates a RemoteIPC server 
in Node 2. The RemoteIPC object handle is traced by “HandleDuplication” functionality (Node 
6). Node 3 corresponds to accepting a connection with the IPC endpoint. Nodes 1, 2 and 3 have a 
PID index. Note that the PID index is a part of the AD formalism presented in Section 3. The 
expression “PID in PList” means that the PID of the process performing the operation must 
belong to the PList. Nodes 1, 2 and 3 represent the inter-process part of the “Remote Shell” 
functionality. Such an inter-process part, along with Node 7, address obfuscation techniques 2 
and 3. Indeed, nodes 1, 2 and 3 outsource the IPC creation to other processes. 



39 
 

The final step of the “Remote Shell” is to run “cmd.exe”. Node 5 creates a process whose 
image belongs to the list of files that originated from “cmd.exe”. Note that this FList was 
produced by the “FileRelocation” operation (Node 4). Moreover, the process is created with 
standard input set to the duplicate/original handle of the IPC endpoint, server or client. 

Let us compare the generalized AD of the “Remote Shell” functionality (Figure 5) with the 
original AD (Figure 2). The generic specification defines six different realizations from the two 
original ADs. All generic realizations are effective against the obfuscation techniques presented 
above. In spite of generalization, the structural complexity of the generalized AD is 
commensurable with the complexity of the original AD. In fact, the overhead imposed by 
generalization is managed via algorithm parameters. For instance, generation of the threshold 
parameter in TraceProcesses, to some degree, determines the overhead of the tracing 
functionality. This demonstrates the effectiveness and flexibility of our approach. 

Understandably, the more obfuscation techniques we address, the more complex the 
generalized specification is expected to be, however, the specification is not yet a complete 
recognition mechanism since it merely represents how the functionality is implemented in terms 
of object manipulations. Hence, the efficiency of the recognition mechanism ultimately 
determines how many obfuscations we can address. We proposed a highly efficient way to detect 
the specified functionalities. The proposed recognition model is scalable enough to detect 
specifications with all currently known obfuscations. 

4.5 Functionality Recognition 

As indicated in the system architecture (Figure 1), the functionality recognition process 
consists of two stages. In the first stage, we recognize individual object manipulations by 
identifying their dedicated APIs in the system call domain. However, a manipulation may be 
performed through several alternative APIs operating on the same Kernel objects. Additionally, 
an API function may invoke several additional minor system calls that are not critical to the 
manipulation implementation. Hence, only the essential, semantically critical part of an API 
function should be recognized and attributed to the corresponding manipulation. This recognition 
approach is resistant to certain evasion techniques when the malware does not invoke the entire 
API but only its critical system calls, thus only partially realizing the API yet achieving the 
required manipulation. 

In the second stage, we recognize functionalities through the identified object 
manipulations, i.e., APIs. Note that system calls represent APIs, and APIs represent 
functionalities in that are consistent with the AD (2). Hence, the same type of models can be 
employed to recognize subsystem object manipulations and malicious functionalities. The 
selection of a particular recognition model must be justified with respect to both expressive 
power and implementation efficiency (computational and memory complexity). 

4.5.1 Justification of the Recognition Model with Respect to Expressive Power. 

Consider the following simple functionality that could be a part of a virus: “open all 
executables in a folder; do not access files until some predetermined point in time; then check to 
see if all of them are ready for code injection; then if all the files are ready, inject the code, 
otherwise close all of the opened files”. One realization of this functionality could utilize the 
CreateFile, ReadFile (to read the PE header) and WriteFile API (to inject code). Since this 
functionality requires the synchronization of file reading and file writing, then the sequence of 
the APIs invoked by the functionality would represent the following pattern: 
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n  times n times n times

CreateFile, CreateFile, ... CreateFile , ReadFile, ReadFile, ... ReadFile ,WriteFile, WriteFile, ... WriteFile
144444424444443 144444424444443 144444424444443

 (3) 

This pattern constitutes a formal language:  

{ }i i += CreateFile ,ReadFile ,WriteFile : ZiL i ∈
 (4) 

According to Pumping lemma, this language is not context-free [45], but it can be 
generated by a context-sensitive grammar. We believe that a context-sensitive grammar can 
express all functionalities presented in AD formalism (2). Object parameters and handle values 
could be represented by a large non-terminal alphabet covering the entire parameter space (i.e. 
all possible values of the parameter’s type). Hence, a functionality can be at least recognized by 
Linear Bounded Automata (LBA) that is an accepter for a context-sensitive language [45]. 

4.5.2 Justification of the Recognition Model with Respect to Computational 
Complexity. 

According to [46], a LBA of size n can be simulated by a Place Transition Net (PT-net) of 
size ( )2nO . The LBA and equivalent PT-net would have identical time complexity for an 

acceptance problem. A PT-net can be translated into an equivalent CPN in such a way that the 
structural complexity of the PT-net (number of places) would be converted into the inscriptional 
complexity of the CPN (arc expressions). Since a CPN would have far fewer places, we prefer 
using the CPN rather than a PT-net. Moreover, a CPN has an advantage over a LBA when 
processing multiple instances of the operation chains (words): should a chain be executed more 
than once, an LBA model accommodates extra states for each instance of the chain. In contrast, a 
CPN represents an executed operation chain as one token residing in the corresponding place that 
allows for processing of multiple chain instances with low overhead. Consequently, a CPN was 
chosen as a recognition model. 

A CPN could formally be defined as a tuple [47]: 

CPN=(S,P,T,A,N,C,G,E,I)  (4) 

where: S – color set, P – set of places, T  – set of transitions, A  – set of arcs , N – 
node function, C – color function, G – guard function, E – arc expression function, I – 
initialization function. 

Next, we formulate a CPN configuration that provides execution semantics for the AD 
specification defined in (2). To recognize the functionalities specified in an AD, a CPN 
configuration must reflect the objects and manipulations. Additionally, we need to recognize 
several distinct functionalities that may or may not have common implementation patterns. 
Hence, CPN places must represent the following states: created objects, object manipulations, 
pseudo states routing the control flow of ADs, and individual functionalities. 

The above considerations indicate that the set of places of the CPN should consist of four 
disjoint sets: 

P=P P P Pobj manip fun pseudo∪ ∪ ∪
 (5) 

These disjoint sets determine the following four types of places: 
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Object place ( Pobj ) is associated with a unique OS object. In this place, a token represents 

an instance of the object associated with the place. Such a token is defined as a tuple: a 
descriptor (handle) of the object instance, and a set of necessary object parameters. Hence, the 
color set of Object-places typically constitutes a pair of two types: the system handle (unsigned 
int32), and the set of attribute types utilized in system calls for creating objects such as strings, 
int32 (for access flags), pointer, and others. 

Manipulation place ( Pmanip) represents a particular operation (manipulation) on an object. 

Such a place contains tokens representing the successful execution of a corresponding operation. 
A token comprises a handle of the manipulated object and critical parameters of the operation 
represented by the place. Thus, the color set of a Manipulation place consists of the space of 
system handles and a set of selected operation parameters associated with the place. 

Functional place (Pfun ) corresponds to a unique functionality. These places contain tokens 

that represent the successful recognition of a given functionality. Note that functionalities 
represent not a particular object, but a pattern of manipulations on several objects. The color set 
of Functional places includes only selected attributes of the necessary objects involved in the 
respective functionality as well as the objects’ operation parameters that individualize the 
functionality. 

Pseudo place ( Ppseudo) is associated with the pseudo states of the AD. A 

manipulation/object place represents an executed object operation. An input transition of an 
object place must be attributed to the execution of one of the functionally equivalent APIs or 
system calls implementing the respective manipulation. An input transition of a functional place 
should be enabled when the corresponding functionality is executed. Hence, the set of transitions 
consists of three disjoint sets: 

T=T T Tman pseudo fun∪ ∪
 (6) 

where Tman  - manipulation transitions representing system calls or a subsystem level 
operation (exported by API); Tpseudo - pseudo transitions that are utilized to reflect AD 

pseudo states; and Tfun  - functional transitions such that their input and output places 

constitute functionalities or functional object operations. 

We should point out that technically, a functional transition would coincide with the 
appropriate system call in a discrete event scale. However, the occurrence of such a transition is 
a semantically important event, thus we deliberately do not associate it with a system call. 

Each manipulation transition (Tman) is enabled upon execution of any of the equivalent 
APIs performing the manipulation. Consequently, the guard expressions of such transitions must 
be defined over the object descriptor space (handle and buffer address) as well as over the 
manipulation parameter space. Guard expressions ensure that only manipulations with 
parameters determined in the corresponding AD would enable the transitions. The expressions of 
the output arcs may include variables of any type from the color set which covers the necessary 
attributes of the system calls and API functions. This provides enough flexibility to distinguish 
similar, yet semantically different functionalities. 

We developed procedure “ADtoCPN” that produces a CPN from the given functionality 
AD (see listing 4). Such a CPN possesses the necessary execution semantics to recognize the 
functionality. Here we only outline the high-level steps of such a procedure. 
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Listing 4. ADToCPN procedure 

Procedure ADtoCPN 
Input: F – an AD of the functionality defined by th e formalism (1). 
Output: CPN – a CP-net that recognizes the given fu nctionality F. 

1. Compose the CPN structure (P, T, A) correspondin g to the constructs of 
the AD of the functionality. Replace the AD arcs wi th transitions and 
replace the nodes with places. 

1.1 Form a set of places P and set of transitions T  that correspond to the 
state and pseudo state nodes of the functionality F . 
1.2 Form a set of the CPN arcs (A) connecting the p laces and transitions 
created in the previous step (1.1) 
1.3 Form a set of functional places, transitions an d corresponding arcs. 

2. Define place colors (C), guard expressions (G) a nd arc expressions (E) 
that define execution semantics of the functionalit y F in the given domain. 

2.1 Define guard expressions of the manipulation tr ansitions that check 
the executed manipulation parameters against parame ters specified in the 
functionality’s AD. 
2.2 Define guard expressions at the transitions tha t represent branching 
arcs of the AD decision nodes. 
2.3 Define a color function (C) that would reflect variables of the 
functionality. 
2.4 Define arc expressions representing variable as signment in the 
functionality’s AD. 
2.5 Induce Color set (S) and the rest of the arc ex pressions from the 
color function (C) and the CP-net structure (P,T,A)  

3. Compile a CP-net ( CPN=(S,P,T,A,N,C,G,E,I)) from the component sets obtained 

in steps 1 and 2.  

Consider low-level CPNs recognizing subsystem object manipulations in the system call 
domain. These CPNs are obtained from the system call level ADs specifying object 
manipulation. Here, manipulation transitions are enabled by system call execution and therefore 
it is an open network driven by external events (OS calls). Moreover, manipulation transitions do 
not have input arcs representing inlet transitions. We also distinguish outlet transitions that 
represent handle/object elimination. For instance, the NtClose system call enables an outlet 
transition that destroys a token from the corresponding place. 

Using procedure ADtoCPN, we obtained both high and low level CPNs for “Remote 
Shell” functionality (Figure 10). 
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Figure 10. High Level (Subsystem Level) CPN for the “Remote Shell” Functionality 

Figure 10 shows the high-level CPN. where places are shaped as ellipses and transitions as 
rectangles. The CPN node indices correspond to the AD nodes they recognize. For instance, 
transition # 7.1 and place #7.2 will recognize Node #7 of the Remote Shell AD. In Figure 10, the 
cloud shapes symbolize external CPNs such as Remote IPC CPN, Low level CPN, and others. 
These external CPNs recognize the corresponding functional/ subsystem manipulations and 
enable relevant transitions. For instance, transition #1.1 is enabled when functional object 
“Remote IPC” is created. The transition’s guard, “PID in PIDList”, checks whether the process 
performing “Remote IPC” belongs to the list of descendant processes. This requires tracing a 
generated process as specified in the AD in Figure 9. The process tracing is performed by the 
“Process Generation” CPN that provides a descendant PID list as tokens to transition #7.1. The 
Object places are highlighted with bold fonts. Place #5.2 (“RemoteShell”) is a 
recognition/functional place that represents a successful functionality recognition. 
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A low-level CPN is shown in Figure 11. It recognizes the following subsystem level 
manipulations: “Create Socket” (socket API), “Bind”, “Listen” (listen API), “Accept” (accept 
API) which are exported by ws2_32.dll; and “Create Named Pipe” (CreateNamedPipe API), 
“Connect Pipe” (ConnectNamedPipe API) which are exported by kernel32.dll. In parentheses, 
we provided an API function that belongs to the group of equivalent subsystem APIs performing 
the associated manipulation. The CPN has three color sets (types): handle (H), whose variables 
represent object handles; string (S) for the file names, and uint32 (I) for access flags. Color and 
variable declarations are written using CPN markup language (CPN ML) syntax [47]. The CPN 
has 10 inlet transitions corresponding to system call execution. These transitions generate tokens 
representing attributes of the system calls that are processed by the CPN. 

 
Figure 11. Low Level (system call level) CPN for the “Remote Shell” Functionality 

It can be seen that a CPN’s structure is very similar to the structure of the AD. A CPN is a 
very efficient recognition mechanism due to token dynamics. Hence, a CPN causes a minimal 
performance penalty for the anti-obfuscation generalization we introduced in Section 3. This 
ensures that our approach is highly scalable, allowing us to address most of the known high-level 
obfuscation techniques. 
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4.5.3 Dynamic Information Flow Tracing 

Depending on the specification, our IDS could employ a coarse-grained detector or fine 
grained detector. Coarse-grained detectors only trace system call execution discarding 
information dependencies. Fine-grained detectors trace information flows using dynamic data 
tracing techniques such as the taint propagation [48, 49], thus potentially providing additional 
discriminative power. However, it was shown that purely dynamic techniques cannot trace data 
transmitted through covert channels such as implicit flows [50]. A particular attack on the taint 
propagation technique was described in [43] using implicit flow techniquethat is hard to defend 
against as confirmed in [51]. Since the implicit flow allows transmitting a bit by not executing a 
branch conditioned by a tainted value, control flow analysis techniques such as [48, 49] are 
useless in this case. Note that the static analysis of the non executed branch would not help either 
because, in general, the branched code could be encrypted. Forced execution of such a branch 
may fail if it has implicit jumps depending on tainted values. 

In general, malware can evade data tracing by using an implicit flow that is easy to 
implement [43]. However, malware cannot avoid using system calls. Consequently, dynamic 
information flow tracing would not decrease false negatives compared to purely system call 
based detection. On the other hand, taint propagation may decrease false positives since there is 
no reason for legitimate software makers to use covert channels in their codes unless they want 
to protect their products against reverse engineering. 

The proposed AD formalism (2) allows for specifying functionality with informational 
dependency between the operation attributes. Recognition of such a functionality would require 
the utilization of the taint propagation engine [48, 49] coupled with the system call monitor. 

4.5.3.1 Taint Propagation Engine 

While implementing the tainting engine, we generally followed the methodology given in 
[52], [48], [51], and [49] but our implementation differs in the following aspects: 

• Taint source and sink utilization 
• Taint dependencies and propagation 

4.5.3.1.1 Taint Source and Sink 

In our system, the objective of the tainting engine is to trace information flow between 
object operations. In the AD formalism (2), an information flow can be specified through a 
variable x that is referred to by the content through a transformation T(x). In this case, the source 
of the information flow is the operation whose output attribute defines the variable. The 
destination of the flow is the operation whose input attribute depends on the content of the 
variable. Note that in the case when the variable representing the flow is referred to by the 
content in several operations/attributes, an information flow may have multiple destinations. 

Functional object operations are based on subsystem operations that in turn are 
implemented through APIs and system calls. Hence, technically, information flow tracing is 
initiated by tainting the output argument of a system call implementing the source operation. At 
the same time, the flow is recognized by checking the taint of the input arguments of the system 
calls realizing the destination operations. To avoid false positives, we utilize a unique taint label 
for each particular instance of the specified information flow. 



46 
 

4.5.3.1.2 Taint Dependencies and Propagation 

As described in [51], our system propagates the taint label according to three dependency 
vectors: explicit data flow, system call and control flow. 

For the x86 architecture, data flow dependency could be represented by data transfer and 
stack instructions such as MOV, MOVX, PUSH, POP, etc., or arithmetic and logical instructions 
such as ADD, SUB, AND, OR, etc. In the case of direct data transfer, the engine propagates 
tainted bytes of the source to respective bytes of the destination. However, if the source is a 
register and it is tainted, the engine marks all of the destination bytes. Note that the source 
operand could be indirect, for instance MOVZX ecx, word ptr [ecx+eax*2]. In this case, the 
engine taints all of the destination bytes if either the index or displacement registers of the source 
is tainted. Such a policy enables tracing array manipulations indexed by tainted values. 

Control data flow usually takes place when a variable is assigned within the scope of if, 
else or switch, case blocks that are conditioned by the tainted value. To resolve such a 
dependency, we tried to follow the methodology in [49] that implies tainting every destination 
within the scope of the conditioned branches. However, based on our experience, sometimes one 
cannot take into account the entire scope, because if any of its branches lead to the return of the 
current function, the system taints everything in the rest of the function resulting in false 
positives. In such a case, we mitigate false taint propagation by pruning such branches from the 
flow graph and limiting the depth of the scope. 

System call dependency is represented by data processing system calls/APIs such that they 
do not perform any system related activity and are only responsible for generating output data 
from the input data. Such data processing system calls are best exemplified by the RTL functions 
RtlInitAnsiString, and RtlAnsiStringToUnicodeString. For instance, 
RtlAnsiStringToUnicodeString(outbuff, inbuff, …) creates a null terminating UNICODE-string 
(outbuf) from an input null-terminated ANSI-string (inbuff). Upon execution of this system call 
our engine would respectively taint the Unicode characters (words) of the output string (buffer) 
corresponding to the tainted ANSI characters (bytes) of the input string (buffer). Note, here we 
perform a one to one tainting to exclude false taint propagation. Some system calls may untaint 
the input argument. For instance, if RtlFreeHeap is to be invoked, then the input buffer is freed 
from the heap causing our system to untaint the content of the buffer. 

Unlike [49], in our system, a particular taint label may become obsolete (retired). When the 
information flow is recognized, the taint label of the flow retires, meaning that the system will 
untaint any object tainted by the retired label. A label may also become obsolete if the system 
identifies that the source system call was executed in the frame of a wrong (non-source) 
operation. The latter situation may occur if two different operations begin with the same 
subsequence that originated in the source system call and then split. In this case, the operations 
only will be recognized at the end of the execution, after the source system call. That means that 
the engine must start tainting before recognizing the entire operation. 

4.5.3.2  Taint Utilization in CPN 

While the taint engine is responsible for taint propagation, in order to recognize the 
information flow in the operation session the CPN-based recognition engine is responsible for 
taint label management. Upon execution of a system call, the corresponding enabled transition 
creates a token representing the system call. If the system call is the source of a specified 
information flow, the transition should also signal the taint engine to create a new taint label and 
add the label to the new token as a field. This way we transmit the taint label of this particular 
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information flow’s instance. When the destination system call is executed its transition also 
checks to see if the taint label of the input token is equal to the taint label of the system call’s 
input attribute. If the labels match (meaning that the instance of the information flow reached its 
destination) the CPN recognizes the flow itself by enabling the corresponding transition and 
firing a token to the recognition place. 

Token dynamics play a critical role for the efficiency of the information flow recognition. 
Since the taint label becomes a part of a token, the recognition mechanism verifies the taint label 
in only two transitions corresponding respectively to the source system call and the destination 
system call. In other transitions where there are no information flow endpoints, the taint label is 
not verified. This separates the tainting engine from the recognition engine, thus achieving the 
optimal overhead (complexity) distribution. 

4.6 IDS Implementation 

4.6.1 AD Designer 

According to the architecture presented in Figure 5, an expert has to specify and supply 
activity diagrams of the functionalities defined in terms of the AD formalism (2). UML 2.x AD 
syntax provides enough constructs for specifying all components of the functionality formalism 
[53]. The state nodes are represented as UML actions, complex functional nodes as UML 
activities, and object operation attributes and variable assignments as UML tag values. 
Additionally, UML syntax allows for using so-called stereotypes that are convenient for creating 
simple node profiles that define the set of tagged values. For each object operation, we use an 
individual stereotype that determines a set of attributes in the form of tagged values. In our 
implementation, the choice of the UML AD designer is not critical as long as it is strictly 
compatible with the UML 2.0 standard. In our experiments, for UML we used Visual Paradigm, 
a commercial software that offers free community releases [23]. After finalizing the AD design, 
the expert exports the AD to the UML XMI, a format that is used to exchange diagrams among 
UML compatible applications. 

4.6.2 Specification Generalizer and CPN Constructor 

We utilized the Python language to implement prototypes of the Specification Generalizer 
and CPN constructor modules. The script for the Specification Generalizer module constitutes 
710 lines of code and implements all three generalization algorithms and the specific functions 
defined in Appendix D. We also developed a function that imports a formal AD from the input 
UML XMI file created by the UML AD designer (Visual Paradigm). The importing is performed 
by interpreting and mapping UML constructs (e.g. tag values, actions, activities) to 
corresponding AD components (e.g. variables, object instances, operations) as defined by 
formalism (2). 

Prior to execution, the Specification Generalizer module imports the input functionality 
AD along with the generalization functionalities’ AD and the functional operations that were 
pre-designed in Visual Paradigm (see Appendices B and C). Then, the module applies the 
generalization algorithms to the input functionality and produces a generalized AD. Finally, the 
module exports the generalized AD to the XMI file. The resultant XMI file can be imported by 
the UML designer for on-demand editing or by the CPN constructor for producing a CPN 
recognition model. 



48 
 

The CPN Constructor module applies the ADtoCPN procedure to the given functionality 
AD to produce the recognition CPNs defined as a tuple (3). Finally, the Constructor translates 
the obtained Petri networks to a CPN ML like format and exports it as an XML file for the CPN 
recognizer modules. 

4.6.3  Functionality Recognizer 

We developed two versions of the functionality recognition modules. The first 
implementation was intended to evaluate the scalability and runtime efficiency of the 
methodology. The CPN recognizer was implemented in 3,500 lines of native C++ code. Here, 
the CPN configuration is mostly hardcoded and its modification usually requires recompilation. 
To minimize the complexity of token matching we utilized self-balancing trees to store tokens in 
places. The trees are indexed by corresponding colors (usually handles) utilized in guard 
expression of the output transitions. To store tokens that represent file derivatives (copies) of the 
original target file we utilized chained hash tables indexed by file names. 

For the sake of efficiency, in this version the system call monitor operated as a Windows 
device driver. We used an SSDT substitution technique in the driver to hook Windows system 
services [3, 23]. Due to this type of driver, such an IDS is not completely transparent, however, 
the IDS’s activity could be concealed through applying driver hiding techniques and covert 
user/kernel communications [23]. 

The second version is less efficient, but much more generic. For this version we developed 
a highly scalable and generic CPN simulator in C# .NET with Linq extension. The source code 
of the most of the CPN simulator components is available at http://apimon.codeplex.com. The 
program package includes several projects constituting 7,900 code lines in total. The projects are 
responsible for system/API call hooking, call data parsing and transmission, and CPN 
simulation. The CPN is built for simulation by translating arc and guard inscriptions into 
generative and filter expressions backed by Linq objects. 

For the sake of performance and operability, we introduced some simplifications to the 
CPN simulator. The first simplification is that we treat the CPN as an open model that is fed with 
tokens from external systems such as the system call monitor and the taint propagation engine. 
Next, we did not implement binding of variables belonging to different arc expressions in order 
to avoid computationally expensive cross list matching. Finally, we eliminated the possibility of 
specifying the number of tokens retrieved by an arc from a place. 

In spite of these simplifications, we preserved most of the CPN execution semantics. In 
particular, we treat arcs as token generators and guards as token binders. Hence, the CPN 
simulator is not limited to any particular execution domain and can process events of any nature 
from multiple sources. For example, the CPN simulator can process system/API calls, API 
functions, and functional object operations supplied from other CPN simulators. Such diversity 
allows us to build and simulate complex, hierarchical CPNs with low execution overhead. 

4.6.4 Taint Propagation Engine 

For the prototype, we did not attempt to achieve low tainting overhead because we were 
primarily interested in evaluating the recognition mechanism in tracing information flows 
specified in the functionality. The taint propagation engine was implemented using an IDA 
debugger with a IDA python debug management script. The engine runs the traced process in 
debug mode and analyzes each instruction and its operands. For each library function call, our 
system resolves the name of the function and input attribute. When a function is called, the IDA 
debugger breaks with a dbg_step_into event and passes control over to our script. The script 
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verifies the function entry address and parses its attributes as well as disassembles the body of 
the function. 

To determine entry point addresses of the system calls our script verifies whether the 
process loaded the native system library (“ntdll.dll”). To achieve this, every time a library is 
loaded, the debugger breaks with dbg_library_load event, then our script parses the ntdll.dll 
image and records its export functions entry addresses aligned to the base address of the loaded 
module. 

In our system, an expert has to provide system call declarations that are used as call 
dependencies as well as related structure declarations. The script parses standard declarations so 
that the expert may directly feed the engine with declarations from the MSDN website. 
Moreover, the expert has to provide dependencies between input and output attributes of each 
particular system call that is a call dependency. Such dependencies are specified in a simple 
XML format. 

4.7 Conclusions 

In this chapter, we addressed present and future limitations of the current Behavior Based 
IDS (BBIDS) associated with signature expressiveness, behavioral obfuscation and detection 
efficiency. We advocate for the separation of the specification and detection domains. We 
presented a new approach for formal specification of the malicious functionalities based on 
activity diagrams defined in an abstract domain. We introduced so-called abstract functional 
objects that along with system objects can be used for creating generic specifications that cover 
multiple functionality realizations while preserving perfect discriminatory power. We developed 
and tested an automated procedure, enabling human experts responsible for the formulation of 
malicious behavioral patterns to concentrate on conceptual realizations while omitting certain 
implementation details. 

We analyzed and classified possible behavioral obfuscation techniques, both inter-process 
and intra-process, that can compromise existing BBIDSs. As a mitigating solution, we suggested 
the concept of specification generalization that implies augmenting (generalizing) otherwise 
obfuscation prone specification into a more generic obfuscation resilient specification. 
Generalization algorithms that make AD immune to the obfuscations were developed. 

We proposed a methodology that uses a CPN to recognize functionalities at the system call 
level. Moreover, we developed an approach for incorporating information flows into a CPN to 
achieve fine-grained recognition. Finally, we proposed an automatic procedure for converting a 
given AD into a CPN that recognizes the defined functionality in the system call domain that was 
enriched with information flow data. In the end of the chapter, we described an implementation 
for all of the IDS modules. 
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5 EVALUATION OF THE DEVELOPED IDS 

5.1 Experimental Setup 

An experimental evaluation of the technology described in this document was conducted 
on the virtual network testbed at Binghamton University [2], [3]. The testbed was configured for 
a virtual network comprising dozens of victim hosts represented by virtual machines with 
vulnerable versions of the Windows OS and our prototype IDS. Using the testbed, we 
experimented with various types of replication engines as well as malware payloads representing 
the following set of potentially malicious functionalities: 

Replication engines: 

• Self code injection – A malware infects an executable file through injecting its own code 
into the executable body and replacing code entry points. It is used by file viruses. 

• Self mailing – A malware emails its image as an attachment. It is used by e-mail worms 
• Executable Download and Execute – Downloads a file from the Internet and executes it. 

Used as a part of self-propagation engine of network worms [2], hence it is exposed by 
exploited processes and network bot agents such as Trojan-downloaders. 

• Remote shell – Described in Section 2. Used as a part of propagation engine for network 
worms; also exposed by network bots. 

Malicious payloads: 

• Dll/thread injection – Injects DLL/thread to the address space of a process. Used for 
password stealing or process control highjacking. 

• Self manage cmd script create and execute – A malicious process creates a command script 
and executes it by running command interpreter. The command interpreter performs 
various operations on the malware image/dlls after its termination. This functionality 
relocates/deletes the malware image to conceal its footprint. Afterwards, a command script 
usually erases itself. 

• Remote hook – Sets a remote hook into a victim process for a particular event; used for 
keylogging. 

• Password stealing – Steals credentials and sends them to the Internet. This functionality is 
discussed in the next section. 

These functionalities were specified, generalized and translated to CPN. Since 
functionalities share the same object operation sessions, to decrease simulation overhead we 
eliminated CPN structural redundancy by integrating the high level CPNs into a single universal 
CPN having several functional places recognizing all given malicious functionalities. The low-
level CPNs were also integrated into a single Petri network capable of detecting object 
operations involved in the functionalities. The CPN configurations were then loaded into the 
Recognizer modules of the IDS. 

We experimented with the malware known, according to AV descriptions, for perpetrating 
at least one of the malicious functionalities in order to verify the detection rate. The selected 
malware set included: 

• File viruses – 7 instances (W32.Neo, Abigor, Crucio, Savior, Nother, Halen, HempHoper) 
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• Network worms – 10 instances (W32.Welchia.A, Sasser.C, Bozori, Iberio, 
HLLW.Raleka.A, Alasrou.A, Kassbot, Shelp.A, Blaster, Francette) 

• E-mail worms – 9 instances (5 variants of w32.Netsky and 4 variants of w32.Beagle) 
• Network bots/Trojans – SpyBot.gen, IRC.SdBot, RxBot families, Win32.Banker, 

Win32.lespy 

We ran each malware image in the corresponding environment allowing it to execute its 
payloads and/or replicate properly. The replication activity was exposed when victim hosts were 
attacked by various worms [2, 13]. The set of test worms included strains that had been modified 
to assure their propagation success, as well as unmodified strains to assure test fidelity. To 
invoke the malicious payloads, we executed malware in certain preset conditions, e.g., we 
established an ftp/tftp server for the “executable download and execute” functionality. In some 
cases, we had to force malware strains to run their payloads by using debugging and run-time 
code modification. 

We ran multitude of benign software including web-browsers, messengers, email clients, 
file utilities, network and system utilities and office tools in order to evaluate the false positive 
rate. We ran the tested software under various conditions/inputs to expose their functionalities. 
We should point out that our experiments did not cover all execution branches of the tested 
programs because some of them were missing certain minor behavior patterns. Nevertheless, we 
believe that in our experiments the tested software successfully exposed all of the main activities. 

5.2 Detection Results 

Tables 6, 7 and 8 capture the main results of our experiments. The upper part of Table 6 
presents detection results for the legitimate software. Each cell indicates how many programs 
were detected based on the given functionality. 

The lower part of table 6 features results for malicious software. For each malware set, we 
indicate how many instances possessing the given functionality were detected. For example, 4/4 
means that there were four malware instances exposing the given functionality and all four were 
detected by our IDS. 

The rest of this section discusses in detail results for the false positives and negatives. 

5.2.1 False Positives 

To assess the false positives, we performed two experiments. 
In the first experiment, we manually ran a diverse set of 210 legitimate programs including 

web browsers, e-mail clients, system tools, file managers, office tools, hooking software, etc. We 
did not traverse all functionalities in all of the tested software because we were only focusing on 
main features of each tested program. 

Table 6 indicates that eight programs out of 210 that showed false positives. Indeed, some 
known malicious functionalities could be exposed by certain legitimate software due to the 
following reasons. 

• Executable Download and Execute. This functionality can be performed by Internet 
browsers or file managers, mostly on behalf of the end-user. In addition, many programs 
perform periodic checks for updates, if there is an update available, the program 
downloads and automatically executes it. This activity can also be tagged as download and 
execute. 
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• DLL/thread injection. This can be performed by user/system monitoring software. In 
particular, the Easy Hook library injects a DLL to trace API calls performed by an arbitrary 
program. The WinSpy program performs a DLL injection in order to retrieve the window 
objects data of a foreign program. 

• Self manage cmd script create and execute. To uninstall hooks, the Easy Hook exiting 
functions run a cmd script that waits for the hooking process to end, then removes the 
hooked DLLs. 

• Remote hook. Hooking can be performed by chat programs to indentify whether a user is 
idle. These programs hook into other processes for the input events such as a keystroke or 
mouse message. 

• Self-mailing. When a user opens the “Save/Open file” dialog window, many programs 
show every file found in the directory by the proper icon in the dialog window. In this case 
if a user browsed to the programs image location in the dialog window right before sending 
an e-mail with attachment, the e-mail clients may show up as a false positive. However, 
such behavior coupled with the sending of email using a client image is considered to be 
atypical user activity. Since this type of situation only happened in a particular scenario 
artificially performed during testing, we did not attribute it to a false positive of the entire 
e-mail client program. 

Table 6 clearly demonstrates the difference in discriminatory power of various 
functionalities that are frequently exposed by malware. According to Table 6, self-code inject, 
self-mailing and remote shell were never exposed by benign software, thus they have near 
perfect discriminatory power and can be used for malware detection. However, “Executable 
Download and Execute” (“ED&E”) that is exposed by benign software such as a web browser 
has low discriminatory power, hence it cannot be recommended for signature-based detection. 
Regardless of the discriminating power, our experiment demonstrates the ability to reliably 
detect individual functionalities. This ability could be beneficial for the detection of complex 
malicious payloads, such as password stealing, that may involve the combined use of several 
interrelated primitive functionalities. 

Table 6. Functionalities Detection Rate and False Positive Rate 
 Self-replication Replication/ payloads Payloads 

Self code 

inject  

Self 

mailing 

Exec. 

Download 

& Execute 

Remote 

Shell 

Dll/thread 

injection 

Self manage cmd 

script create & 

execute 

Remote 

Hook 

L
eg

iti
m

at
e 

so
ft

w
ar

e 

203 Windows system 

tools, office apps, 

other utilities 

    1 1  

2 Web browsers 

(Opera, IE) 
  2    1 

2 E-mail clients 

(Outlook Express, 

Eudora) 

 2(?)      

1 Instant messaging 

client (Yahoo 

messenger) 

  1    1 
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2 File managers 

(FAR,Win Exp) 
  1     

 Total detected   4/210  1/210 1/210 2/210 

M
al

w
ar

e 

7 File viruses 7/7       

10 Network worm shell 

codes  
  2/2 8/8    

6 Network worm 

payloads 
  4/4 1/1 1/1  1/1 

9 E-mail worms   9/9      

 SpyBot.gen family    all all   all 

 IRC.SdBot family   all all  all all 

 RxBot family (11)   all all all all all 

False positive 0% 0% 1.92% 0% 0.48% 0.48% 0.96% 

Detection rate 100% 100% 100% 100% 100% 100% 100% 

The second experiment was performed utilizing a large set of system tools. The purpose of 
this experiment was to verify whether the MS Windows package has programs that expose 
malicious functionalities in their main operational mode. This was achieved by automatically 
running all binary executables from the Windows system folders (C:\Windows\ and 
c:\Windows\System32\). For each program, our system performed the following steps: 

1. Create suspended process 
2. Initiate CPN simulator and system call monitor 
3. Resume process and collect data until program finishes execution or after 20 second timeout 
4. Write place reachability statistics to a report file 
5. Clear Petri Net contents for the next run 

In total, our system ran 339 programs located in windows folders. All CPN statistics 
reports are summarized in Tables 7 and 8. Table 7 features the reachability statistics for the low 
(system call) level CPN (see Figure 5). The low level CPN recognizes object operations exported 
by the subsystem API. Hence, it has a recognition place for each necessary subsystem API 
exported by kernel32.dll and ws2_32.dll. In table 7, the first column shows the names of the 
libraries whose API are recognized by the CPN. The second column shows name of the API 
functions that export object operations recognized by the CPN. The third column shows the 
number of programs that invoked a particular API resulting in successful recognition of the 
corresponding API/operation. For instance, the table shows that CPN recognized the 
kernel32.WSASocket API in the system call flow in 8 out of a total of 339 programs. 

It can be seen that the reachability for places associated with system call execution is 
higher than the reachability of the API (object operation) places. This happens due to the fact 
that a single API may repeatedly invoke several system calls resulting in many tokens for each 
system call. However, during the process of API recognition, most of the CPN transitions take 
several system call tokens and fire only one API related token. Note, since the number of 
processed tokens decreases towards the recognition place, the CPN simulation overhead also 
decreases while as we near the moment of functionality recognition. 

Table 8 presents reachability statistics for the high (subsystem) level CPN. The low level 
CPN provides the high level CPN with tokens that are associated with system object operations 
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involved in particular functionalities. In the table, the second column depicts the name of the 
operation or functionality that is represented by its respective recognition place. Similar to Table 
7, the third column of Table 8 shows number of programs that reached the particular place 
associated with the functionality or object operation. 

Table 8 presents five functionalities of interest (marked by a grey background): self code 
inject, self mailing, remote shell, and executable download and execute. We should point out that 
each functionality is represented by a recognition place in the high level CPN. Therefore, a 
functionality is detected in the program if a corresponding CPN place is reached by a program 
during the test. 

Tables 7 and 8 indicate that most programs opened files and read/wrote some data, 
however only a few accessed files of interest such as executables or libraries. Several programs 
created a socket and established a connection, however, none of them utilized that socket for 
remote shell or to download an executable. As a result, CPN recognition places (shaded rows) 
were never reached by any of the 339 programs tested, indicating that there were zero false 
positives exposed. 

Table 7. Place Reachability Statistics for Low Level CPN 

Library System calls/API # of programs reached the place 

Ntdll 

(System 

call) 

ZwClose 193 

ZwCreateFile 119 

ZwOpenFile 106 

ZwReadFile 94 

ZwWriteFile 64 

ZwCreateSection 50 

ZwMapViewOfSection 151 

Kernel32 

(API) 

CreateProcess 36 

CreateNamedPipe 0 

ConnectNamedPipe 0 

WS2_32 

(API) 

WSASocket 8 

connect 6 

bind 7 

listen 1 

accept 0 

send 4 
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Table 8. Place Reachability Statistics for High Level CPN 

Object Operation/functionality # of programs reached the place 

File 

Map file 38 

Read file 15 

Write file 4 

Read itself of map itself 0 

Write to executable file 0 

Inject self-code 0 

Start process from edited or created executable 0 

Named Pipe 
Pipe created and connected 0 

Remote shell via named pipes 0 

Socket 

Socket connected 6 

Download and execute 0 

Socket bound 7 

Socket listening 1 

Accepted sockets 0 

Remote shell via socket 0 

SMTP protocol 0 

Self-mailing 0 

The goal of the second experiment was to verify windows system tools using standard 
inputs in standard operating mode. Our experiments showed zero false positives. It seems that 
the reason for zero false positives could be attributed to the fact that windows tools only have 
only necessary and limited capabilities strictly defined by the purpose of the tool. Therefore there 
is no reason for redundancy on the functional level. For instance, the registry management tool 
would never download a file from a remote host, simply because this functionality could be 
achieved through another dedicated tool. Certainly, such tools would not perform unnecessary, 
potentially malicious, functionalities such as self code inject or self-mailing. 

5.2.2 False Negatives (Detection Rate). 

As Table 6.indicates, for each malware containing the given functionality, our IDS 
successfully detected the functionality with zero false negatives. Such a low false negative rate 
could be attributed to the signature generalization. For instance, the Beagle worm drops itself 
into the system folder, and then it e-mails its dropper. However, our prototype system 
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successfully detected this type of self-mailing activity because it traced the dropper as an object 
relocation functionality. 

While creating the AD specifications for the tested malware, we observed an interesting 
fact - that malware strains within the same family rarely demonstrate a conceptually novel 
realization. Instead, new malware strains frequently introduce minor alterations to their 
functionality realizations such as the utilization of alternative APIs or changing a Local IPC, i.e., 
switching from a named pipe to shared files. We see two reasons for this trend. First, the 
attackers try to change the malware system footprint in order to avoid certain AV signatures. 
Second, in the case of botnets , they simply try to enhance the performance of malware by 
optimizing or simplifying their implementation. 

5.2.3 Case Study - Password Stealing 

Table 6 demonstrates that malware, such as botnets, carry many malicious functionalities 
as their payloads. Such diversity could be conducive to detection. We may target not just one 
malicious functionality, but rather a pattern of such functionalities that would determine the 
degree of hostility of the process. 

As indicated in table 6, remote hooks had several false positives. While remote keystroke 
hooking may not be malicious (at least with chat programs), keystroke stealing is certainly 
malicious. The fact that the hooked (victim) process transmits some data to the master process 
and then the master process sends something to the Internet, is much more suspicious. This 
rather complex functionality can only be detected by analyzing the combined activity of both 
processes (master and victim) and correlating their invoked manipulations. In this case, such 
activity combines functionalities 7, 5 and Local IPC. 

The functionality mentioned above is known as Password stealing and is presented in table 
9. In the first step, the master malicious process sets keystroke hooks into the victim process. In 
the step 2, the hook handling function in the victim process transmits a keylog to the master 
process. Finally, in the step 3, the master process sends keylog data to the Internet. In the table, 
step 2 represents the combined activity of both the master and the victim processes. While steps 
1 and 3 constitute individual activity, e.g. the master process does not need cooperation from the 
victim process to perform a remote hook or to send data to the Internet. 

Table 9. Password Stealing Functionality  
 Process 1 (master process) Process 2 (victim, hooked process) 
1 Hook to victim process keystroke events  
2 Establish Inter-Process Communication (IPC) with the victim process 
3 Send the data to Internet  

The CPN was designed with only functional objects recognized by external CPNs. The 
transition 1.1, 2.1 and 3.1 correspond to the activities in steps 1, 2 and 3 respectively in Table 9. 
These transitions are enabled upon recognition of the corresponding functional operations in the 
external CPNs such as: Remote Hook, Local IPC and Remote IPC. As shown in Figure 12, node 
6 represents a successful recognition of the functionality. The remote Hook CPN recognizes the 
Remote Hooking functionality, which is step one in table 9. This CPN has one recognition node 
– named “Hook”. Each token in this recognition place represents the successful execution of a 
remote hook. The color of such a token defines the following: ID of the process that performed 
the hook, ID of the thread that is hooked, and the type of hook for an instance of the keystroke 
hook (WH_KEYBOARD). This CPN recognizes several realizations of remote hooking such as: 
DLL injection, direct windows hook and windows message parsing. 
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Figure 12. High Level CP-subnet for the “Password Stealer” Functionality. 

Detection rate. We experimented with two families of malware that include four variants 
of the Win32.Banker and two variants of Win32.lespy. According to their description in 
viruslist.com, these malware expose a functionality that we can recognize, i.e. password stealing 
with IPC. Our prototype IDS successfully detected the password stealer functionality in all of the 
malware that we tested. 

False positive rate. To estimate false positives we experimented with several popular 
programs: two messengers (QIP Infium, MS Messenger), two browsers (MS Internet Explorer, 
Opera), a file manager (Far), an email client (Outlook Express) and an automatic keyboard 
layout switcher (Punto Switcher). The results for place reachability of the CPN are summarized 
in table 10. This data indicates that all tested programs performed “Hooking” functionality (place 
1.2 was reached) and that most of them opened Remote IPC (place 3.2 was reached) and sent 
some data. None of them connected to the process which they hooked to (place 4 was not 
reached). Hence, we did not observe any false positives on this set of software. 

These results demonstrate that it is more effective to detect complex functionalities rather 
than primitive functionalities. This example shows the significant advantage of utilizing CPNs 
for processes behavior recognition - that is their ability to trace the activity of several processes 
in the context of a single CPN. Moreover, in the CPN, the necessary attributes propagate as 
token fields allowing for system call association by process and thread ID. This makes if possible 
to recognize an interposed (system-wide) activity such as password stealing that involves two 
processes (the master process and the victimized process with an injected DLL). 

Table 10. Place Reachability of CPN for "Password Stealer" 
 Remote Hook (1.2) IPC established (2.3) Senders (3.2) Hook IPC (4) Keylogging (6) 

Far manager v     

Internet 

Explorer 
v  v   

QiP Infium v   v   
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MS Outlook 

Express 
v  v v   

MS Messenger v  v   

Opera v  v   

Punto Switcher v  v    

5.3 Performance Overhead Evaluation 

The scalability of our IDS depends on two main factors: the execution overhead of the 
monitored processes and the overhead penalty of CPN generalization. The first factor determines 
the quantitative restriction of our IDS, i.e. how many processes could be protected by our IDS. 
The second factor defines the qualitative restriction, i.e. how generic our IDS should be to 
address possible obfuscations. 

Process execution overhead is mostly imposed by the system call monitor and to a much 
lesser degree, by CPN processing. 

The system call monitor driver is always active in the Windows Kernel. When a system 
call of interest is invoked, the driver receives execution control from the system service 
dispatcher, reads the system call input parameters, invokes the original system call, reads the 
output parameters of the system call and returns execution control back to the dispatcher. Such 
reading and saving attributes contribute the most to process execution overhead. 

Each system call of interest that is invoked by a process gets processed by the CPN. 
Hence, the more systems calls that we invoke per time unit, the higher the overhead that is 
imposed by CPN processing. However, our CPN execution semantics appeared to be very 
efficient in processing a large number of system calls. 

Periodically, the CPN recognizer requests system call data from the monitor driver. Such 
User/Kernel communication imposes additional overhead that is minimized due to buffering 
system call data and desynchronizing system call input and output attributes. In other words, the 
driver does not wait for system call execution and may send input parameters before receiving 
the output parameters. 

The IDS was executed in Windows XP Professional SP2 running on an AMD Athlon 64 
X2 (2200 Mhz) processor with 2 Gb of memory. In our performance tests, we evaluated the 
overhead imposed by tracing different tasks and applications. Moreover, we estimated the 
performance penalty for tracing generalization functionalities caused by behavioral de-
obfuscation. 

5.3.1 Run-time Performance Analysis 

We measured overhead of system and application tasks using commercial benchmarks and 
manual setup. To achieve consistent results on Windows XP, we deactivated the Windows 
prefetcher, scheduled tasks and only accounted for warm runs (to minimize cache influence). 
Some tests, such as file search and software installation were performed in a virtual machine 
where we reverted the machine to the initial snapshot state for each run. 

The test results for the Remote Shell functionality are presented in table 11. For the sake of 
brevity, we only showa select set of standard tests that are representative of execution overhead. 
The table depicts two system tasks and three application tasks. These tasks intensively utilized 
OS resources (services) resulting in a large number of invoked system calls. Some tasks involved 
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user interaction with the GUI of the corresponding application. In these cases, we utilized 
TestComplete software [54] to simulate user behavior. 

We also ran a series of benchmarks using the well-known PC Mark 05 suite [55]. Internet 
Explorer was tested using the Peacekeeper benchmark [55]. We ran each task/benchmark several 
dozen times with identical initial conditions and computed the mean value and standard 
deviation of the execution time/score assuming a normal distribution. 

In order to estimate the qualitative scalability of our IDS we tested each task against two 
CPN configurations: Basic and Full. The Basic configuration covers alternative realizations of 
the functionality in question, but does not trace generic objects or obfuscations. In contrast, the 
Full configuration traces the necessary functionality generalizations and addresses all three 
obfuscations. To estimate the quantitative scalability, our IDS observed all active processes, but 
CPN recognizer in all performed tests. 

For each task, table 11 shows: base execution time when the IDS is disabled (no system 
call monitoring or processing) and execution time when the IDS is enabled with both Basic and 
Full CPNs recognizing the Remote Shell functionality (with monitoring all active processes). 
One can see that even using the Full CPN IDS does not impose much overhead (less than 4% on 
average), while monitoring more than 50 (all active) processes. In fact, we also ran the IDS with 
highly loaded Windows XP (more than 100 processes) without any significant overhead. This 
result shows sufficient scalability to protect all processes of a modern OS. 

It could be seen that generalization and de-obfuscation does not impose a significant 
overhead penalty (0.31% in average). Note that in some tests Base and Full CPN overheads were 
considered to be invariant under a statistical hypothesis with 80% power. This shows that our 
IDS is highly scalable and can address many additional behavioral obfuscations. 

While the tasks in table 11 exposed some overhead, many other standard computationally 
expensive tests did not show any execution overhead. For instance, Matlab did not show any 
overhead because its benchmarks involved mostly memory manipulations and math 
computations which utilize few system services resulting in a low number of invoked system 
calls. Similarly, the MS Word search and replace task imposed significant overhead on the CPU, 
but virtually none on the OS itself. 

Table 11. Execution Overhead due to IDS 

Benchmark/Application 

(Task discretion) 

Execution (seconds / score)  
Overhead 

(%) 

System 

call 

count 
IDS 

disabled 

IDS enabled 

Basic CPN Full CPN 

S
ys

te
m

 ta
sk

s  

Files Search 
(Search *.exe in c:\) 

58.96 

± 0.907 

62.01 

±1.04 
63.66 ±2.04 

5.2 (Basic) 
7.96 (Full) 

250,168 

Application Installation 
(Install DirectX 9.0c) 

112.3 The same 113.6 1.15  

A
pp

lic
at

io
n 

ta
sk

s 
 

MS Word 
(Save a big file as rtf)  

35.9 

±0.787 
The same 

37.4 

±0.52 
4.18 95,894 

WinRar 
(Compress Windows 

system folder)  

292 The same 
298 (Full) 

296 (Basic) 
2.05 98,396 
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Internet Explorer 8 
(Peacekeeper Browser 

Benchmark, 

www.futuremark.com)  

 

702 

 (Score) 

 

665 

(Score) 

 

657 

(Score) 

 
5.3 (Basic) 
6.4 (Full) 

 

 

P
C

 M
ar

k 
20

05
 (

sc
or

e)
 Application loading 

(Mb/sec) 

4.96 

± 0.0132 
The same 

4.87 

± 0.355 
1.84 10,345 

Web page rendering 
(pages/sec) 

2.0332 

± 0.04672 
The same 

1.8892 

± 0.1088 
7.08 

100,503 
File Encryption 
(Mb/sec) 

36.827 

±0.134 
The same 

35.746 

±1.066 
2.93 

XP Startup 
(Mb/sec) 

5.88 

± 0.022 
The same 

5.75 

± 0.28 
2.21 

7843 

Average execution overhead 

Basic CPN configuration 

(with multiple realizations) 
3.67% 

 

Full CPN configuration 

(with generalization and de-obfuscation) 
 3.98% 

5.3.2 Stress Test 

The purpose of this test was to estimate the overhead of the IDS operating under a stress 
attack. The stress attack could be conducted by a malware in order to congest the IDS. Such an 
attack implies invoking many system call chains without closing handles causing the IDS to 
process all of the objects and bind their handles. Such an attack would only be successful if the 
malware could effectively congest our IDS before congesting the OS while keeping a low 
execution profile. In the case of congesting the OS, such malware would be forced to expose 
itself and could be detected and terminated by any system administration tool. 

We utilized the Microsoft Performance Monitor (Perfmon) tool to measure the runtime 
overhead of the IDS. In this test, we evaluated the performance penalty for countering the 
obfuscation through object relocation. In particular, we measured the overhead imposed by the 
handle and file tracing functionalities that were introduced by the corresponding generalization 
algorithms. In this experiment, we ran accustom designed test program that opened 70 files 
(kernel32.CreateFile) in the Windows system folder and for each file it duplicated 20,000 
handles (kernel32.DuplicateHandle) and 20,000 mappings (kernel32.CreateFileMapping). As a 
result, it creates 1,400,000 distinct file object handles and 1,400,000 mapping (section) object 
handles. 

Figure 13 shows CPU usage for test program and our IDS module. Our results indicated 
that the test program consumes a substantial amount of CPU cycles (around 90%), while the IDS 
recognizer module imposed less than 2% overhead on average for the trace object relocation 
activity. Such a drastic difference in overhead can be attributed to the fact that each object 
creation and handle allocation imposes a certain amount of overhead due to parsing/updating the 
internal Kernel structures, manipulating low level objects by Object Manager and pre-processing 
system call attributes in the API implementation. Even for a simple handle duplication, the 
system call invocation requires user/kernel switching that is expensive for Windows OS. In 
contrast, the CPN handle binding only requires user mode memory manipulations with highly 
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efficient algorithms, e.g. balancing trees, or simple pointer resolution, e.g. hash tables. Hence, for 
each handle duplication or object creation the CPN imposes significantly less overhead. 

 
Figure 13. Handle Duplication Test 

5.4 Conclusions 

This chapter presented the experimental results for the signature-based prototype IDS. This 
IDS was evaluated on hundreds of legitimate programs and dozens of malware that had various 
types of replication engines and payloads. In general, the experimental results indicate low false 
positives and negatives. However, the experiment demonstrated the variability in discriminatory 
power of various functionalities that are frequently exposed by malware. The experiment also 
indicated that self-code inject, self-mailing and remote shell are never exposed by benign 
software, thus they have near perfect discriminatory power and can be used for malware 
detection. However, “Executable Download and Execute” is exposed by benign software such as 
web browser has low discriminatory power, hence it cannot be recommended for use in 
signature-based detection. Regardless of the discriminating power, the experiment successfully 
demonstrated the ability to reliably detect individual functionalities of any complexity. 
Additional experiments indicated that it is more effective detecting complex functionalities 
rather than primitive functionalities. 

Finally, we performed a series of experiments to estimate the IDS runtime overhead using 
well-known benchmarks and manual setup. The results indicated two practical advantages. First, 
the IDS caused low overhead, which was less than 4%. Second, the overhead increase due to the 
anti-obfuscation generalization constituted only 0.3%. Such a low overhead difference between 
original and generalized CPNs indicates that an expert can always address many more 
obfuscation techniques with negligible execution cost. 
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6 SUMMARY AND FUTURE WORK 

We are witnessing an on-going arms race in the cyberspace. The ever-increasing resources 
invested in the development of computer defenses are apparently outweighed by low-cost efforts 
of the hacker community. The term "asymmetric warfare" is perhaps the best way to describe the 
existing shaky balance between defensive and offensive forces in cyberspace. This report 
presented research on semantic approaches to malware behavior analysis. Such research aims at 
enhancing computer defenses, making them invulnerable to new, mutating and obfuscated 
malware. The developed approach is implemented and used to develop scalable IDSs.  

In the second section, we studied modern threats and current anti-virus technologies. The 
analyses indicated that commercial host based malware detection technologies are not effective 
against sophisticated self-mutating malware. 

In the third section, we introduced a taxonomy of malicious functionalities of typical 
malware that could be attributed to the essence of malicious activity. In particular, we analyzed 
basic self-replication mechanisms as well as several malicious payloads. Three types of the self-
replication mechanism were discussed including: binary self-replication, server-side replication 
and client-side replication. Moreover, a wide range of malicious payloads was classified and 
analyzed. The study indicated that self-replication is an example of highly discriminative and 
indicative malicious functionality. Obviously, there is no reason for legitimate software to self-
replicate since it can be distributed by legitimate means (e.g. downloads and install, trial etc.). 
Hence, self-replication has become of great interest to the network defense research community. 
One of our goals was to model self-propagation in order to investigate and estimate the possible 
impact of self-replicating software on network resources. 

In the fourth section, we stated that malware maliciousness can be attributed to its goals, 
which can be viewed as high level functionalities. While a particular functionality may have 
several realizations, each realization would constitute a certain behavior. The behavior of each 
malware can be detected dynamically by observing its execution in a particular domain such as 
the system call domain. However, it is more important to infer high level functionality of the 
malware, rather than its simple behavior. To achieve this, one needs to address the three 
following aspects: signature expressiveness, vulnerability to behavioral obfuscation, and run-
time efficiency of signature matching. 

We justified the separation of the specification and detection domains. We presented a new 
approach for formal specification of the malicious functionalities based on ADs defined in an 
abstract domain (i.e. functional objects). We developed and tested an automated procedure 
enabling human experts responsible for the formulation of malicious behavioral pattern to 
concentrate on conceptual realizations omitting certain implementation details. 

We analyzed and classified possible behavioral obfuscation techniques, both inter-process 
and intra-process, that can compromise existing BBIDS. As a mitigating solution, the concept of 
specification generalization that implies augmenting (generalizing) otherwise obfuscation prone 
specification into more generic obfuscation resilient specification was suggested. We developed 
generalization algorithms making our AD immune to obfuscations. 

We proposed a methodology utilizing a CPN for recognizing functionalities at the system 
call level. Moreover, an approach for the incorporation of information flows into the CPN to 
achieve fine-grained recognition was developed. Finally, we proposed an automatic procedure 
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for converting a given AD into a CPN that recognizes the defined functionality in the system call 
domain, enriched with information flow data. 

Our experimental results for a signature-based prototype IDS are presented in the 5th 
section. The IDS was evaluated on hundreds of legitimate programs and dozens of malware. In 
general, the experimental results indicate low false positives and negatives. However, the 
experiment demonstrated the variability in the discriminatory power of various functionalities 
that are frequently exposed by malware. The experiment indicated that self-code inject, self-
mailing and remote shell are never exposed by benign software, thus they have near perfect 
discriminatory power and can be used for malware detection. However, “Executable Download 
and Execute” is exposed by benign software such as a web browser and has low discriminatory 
power, hence it cannot be recommended for a signature-based detection. Regardless of the 
discriminating power, the experiment demonstrated the ability to reliably detect individual 
functionalities of any complexity. Additional experiments indicated that it is more effective to 
detect complex functionalities rather than primitive functionalities. 

Finally, we performed a series of experiments to estimate the IDS run-time overhead using 
well-known benchmarks and manual setup. The results indicated two practical advantages. First, 
the IDS causes low overhead which less than 4%. Second, the overhead increase due to the anti-
obfuscation generalization constitutes only 0.3%. Such a low overhead difference between the 
original and generalized CPNs indicates that an expert can always address many more 
obfuscation techniques with negligible execution cost. 

The experiments proved that signature-based behavioral approach appeared to be effective 
in detecting malware activity in the system call domain. While the anomaly propagation concept 
certainly has its advantages in decreasing false positive rate, it was observed that all such 
anomalies could be linked to various malevolent functionalities and detected as behavioral 
signatures. Indeed, in the behavioral domain the threat model is known and could be viewed as a 
set of malicious functionalities. This is especially true when the threat domain is represented as 
malicious functionalities and the normalcy domain as legitimate functionalities. Due to specific 
and well established goals, malware exhibits a very limited number of malicious functionalities. 
On the other hand, the number of legitimate functionalities is only limited by the imagination of 
software makers. Finally, a malicious functionality (threat) is known and deterministic and the 
only item that is not determined is a realization of the functionality (i.e. behavior). Hence, it is 
critical to specify and detect a functionality not just a behavior. 

 
For future research, we plan to expand the list of possible behavioral obfuscation 

techniques and address them into the AD generalization. We intend to explore the increasing role 
of behavioral metamorphism as it implies the dynamic scattering of malicious functionalities 
among different benign processes so that none of the processes would have a consistent system 
call pattern, potentially resulting in offensive information warfare. We are interested in dynamic 
AD construction from the monitored behavior of processes of interest. First, this would allow for 
automatic retrieval of the functionalities for a particular program. Establishing a set of common 
functionalities representing the normal operation of a computer network, would result in a 
"customized normalcy profile" that will be invaluable for the development of dependable IDS. 
Second, the expansion of the data base of malicious behavioral signatures on the basis of 
automatic functionality detection, would result in enhanced misuse based IDS. The deployment 
of behavioral anomaly-based and misuse-based IDS would drastically improve computer 
defenses for "high value targets"  
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We believe that detecting malicious functionalities using generic signatures is the most 
promising approach. Such an approach raises the semantics of the detector from behavior to 
functionality, allowing us to identify classes of malware that achieve the same practical 
malicious goals. In other words, malware functionality represents the essence of maliciousness. 
Hence, detecting malicious functionality is the most accurate and precise method for 
distinguishing malware from benign software. Moreover, the proposed technology for dynamic 
functionality detection (CPN) was proven to be efficient enough for practical use in IDS. 
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APPENDIX A – AD FORMALIZATION 

Firstly, let us introduce some basic notations we use in the formalization: 
O  - set of OS objects. 
M  - set of object manipulations (operations). 
Object or manipulations have attributes 
AttList : U∪ →O M , such that 

( ): AttListx x∀ ∈  O  - set of attributes of the object x. 

( ): AttListy y∀ ∈  M - set of parameters of manipulation y. 

( ) ( )AttSpace : AttList AttList U× ∪ × →O O M M 9, such that 

, AttList( )x att x∀ ∈ ∀ ∈O  : ( )AttSpace ,x att - set of all possible values (space) of an attribute 

att of an object x . 
, AttList( )y att y∀ ∈ ∀ ∈M : ( )AttSpace ,y att - set of all possible values (space) of a parameter 

att of a manipulationy . 
The set of objects O includes both subsystem level objects (e.g. “File mapping”, “Socket”) 

and Kernel objects exported to the user mode (e.g. “File”, ”Process”, ”Find file”). The set of 
object manipulations M  is induced by API functions as well as system calls performing the 
manipulations. The object manipulation parameter set is generated by attributes of semantically 
equivalent API functions that export the particular manipulation. The function AttList(x) returns 
list (set) of parameters of the operation x. 

Based on the above terms, functionality is defined as an Activity Diagram (AD) in the 
following form: 

( )F= Nodes,Arcs,Assign,Vars   (A-1) 

where, 
Vars - a set of local variables used in the object manipulations. 

[ ] { }× ∪ ∪Nodes= Ind State Pseudo initial,final  is a set of AD nodes such that, 

∪State=Instances Manipulations  is a set of State nodes, where 
Instances is a multi-set of object instances defined as: 

( ) [ ]{ }, Ob,Attr Ob= ∈Instances O
 (A-2) 

where 

( )
[ ] [ ]

( ){ } ( )
1.. , AttList( )

,
AttSpace T ,

i

i i
i i i

i k Name Ob
Attr Name Value

Value Ob,Name Value x x

 ∈ ∈ =  
 ⊂ ∪ ∨ = ∈   

Vars Vars
 (A-3) 

where k is the number of critical attributes, T() abstract transformation of the input 
variable. 

                                                 
9 U – universal set (set of all sets) 



69 
 

In the set Instances  each element represents a particular object instance which is 
created in the context of the functionality execution. An object instance consists of the object 
name (Ob) and a set of attributes (Attr). Each object i-th attribute iAttr  is represented by a tuple 

( ),i iName Value . The first element of the tuple represents the name of the attribute that is unique 

for a particular object. The second element could define the following: value set from attribute 
domain, local variable or transformation of the local variable. Transformation T() is utilized for 
specifying informational dependency (flow) between attributes of the operations. Such 
transformation should not be defined to specify any information flow, e.g. data dependency of 
any nature including control related flows. 

The variables are assigned during functionality execution. The set of attributes contains 
only those attributes that are critical for functionality execution. For example, in the functionality 
presented in Table 1, the instance of the “Process” object (created by CreateProcess) can be 
specified as:  

( ) ( )
( ) ( )
bInheritHandles, TRUE , STARTUPINFO.dwFlags, STARTF_USESTDHAND

,
, , ,

Process
STARTUPINFO.hStdInput s STARTUPINFO.hStdOutput s

     
      (A-4) 

Manipulations  - the set of invoked manipulations that is defined as: 

( ) [ ]{ }ParamsM, M= ∈Manipulations M
 (A-5) 

 where 

( )
[ ] [ ]

( ){ } ( )
1.. , AttList( ) ,

Params ,
AttSpace T , 

i

i i
i i i

i k Name M
Name Value

Value M,Name b x x

 ∈ ∈ =  
 ⊂ ∪ ∨ = ∈   

Vars Vars
, (A-6) 

where k is the number of critical parameters, T() abstract transformation of the input 
variable. 

In the set Manipulations  each element represents an object manipulation invoked by 
the functionality. A manipulation is defined by the operation name and the set of input 
parameters. Every parameter is represented by a parameter name and a parameter value set that is 
a subset of the corresponding parameter set or that could be specified as a local variable or its 
transformation. The set of parameters comprises only those critical parameters that determine 
functionality. 

Ind -  a set of process identities, such that each element of this set represents a local ID 
of the process that performs the object operation. Hence, every distinct process involved in the 
functionality has its unique index form the set Ind. This addresses the third requirement of the 
specification allowing for specifying an inter-process functionality. 

Pseudo  - pseudo nodes that route the control flow, presented by: decision, merge, fork or 
join. 

( ) { }{ }= , , ,x Type x decision merge fork join∈Pseudo
, (A-7) 

where ( )Type x  is the type of the node x. 
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∪Arcs=ControlFlow HandleFlow  is a set of directed arcs connecting operation nodes 
as a union of mutually exclusive sets ControlFlow  and HadnleFlow . 

Nodes Nodes⊂ ×HandleFlow  is the set of arcs (handle arcs) that correspond to execution 
flow with handle inheritance. A handle arc indicates that the destination operation (node) utilizes 
the same object instance handle as a source operation and is executed right after the source. In 
other words, the source and destination operations are performed on the same object instance and 
are involved in the same manipulation session. In terms of the UML 2.x activity diagrams syntax 
[14], such arcs could be viewed as a fusion of the object flow with the control flow. 

Nodes Nodes⊂ ×ControlFlow  is a set of directed arcs that define the control flow 
without handle inheritance. The arc from this set indicates that the destination operation is 
executed right after the source operation. Note, such arc simply shows the execution order and 
does not indicate any data binding (via handle or attribute). 

: Arcs Expression→ ∪∅Assign  is a variable assignment and guard function such that, 

( )
( )

Assignmentexpression, State
( )

Guardexpression, Pseudo

Source a
a

Source a

 ∈=  ∈
Assign

, ( )Arcs :a Source a∀ ∈  (A-8) 

( )( ){ }Assignment expression= " : " Vars,v out v out OutPar Source a= ∈ ∈
,  (A-9) 

where ( )OutPar x  is a list of output parameters of object operation x. 

This function defines a variable assignment expression for corresponding arcs having the 
State node as a source. The assignment expression utilizes output parameters of the arc’s source 
operations to assign required local variables. Such parameters may include object descriptors 
(handle, memory offset, etc) of the source operation. If the source of the arc is a Pseudo state 
node, this function determines a guard expression as defined in the original UML 2.0 activity 
diagrams. Note that the Assign  function does not define an expression for every arc, but for 
those where it is necessary. 
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APPENDIX B - REMOTE IPC ADS 

Named Pipe
Name=ID, dwOpenMode=

PIPE_ACCESS_OUTBOUND

Socket

Bind
port=ID

Listen

V2=Handle

Named Pipe
Name=ID, dwOpenMode=

PIPE_ACCESS_OUTBOUND

V1=Handle

1

2

3

7

b

c

d

e

a

(EndPoint, ID)

EndPoint==server

7

Type:=Socket

Handle:=V1

Type:=Pipe

Handle:=[V1,V2]

Mail Slot
name=ID

7

Type:=MailSlot

Handle:=ret

V1=Handle

EndPoint==client

Socket

Connect
Host=ID[0]

 Port=ID[1]

1

b

File
   Name=\\.\pipe\+ID 

File
   Name=\\.\mailslot\+ID 

2

e
Type:=Socket

Handle:=V1

V1 =Handle

      Type:= Pipe

Handle:= ret

Type:=Mailslot

Handle:=ret

e

 
Figure B-1. Remote IPC- Create Operation 

Recv

SocketHandle=Handle

lpBuffer=Buffer

a

(Type, Handle)

Type==Socketelse

1

If (Type==Pipe)&(len(Handle)==2) 

then V=Handle[0]

else V=Handle  

b

2

ReadFile

PipeHandle=V

1

//  Is the pipe Duplex ?

// Pipe or Mailslot

Buffer=lpBuffer Buffer  =  lpBuffer

(Buffer)

 
Figure B-2. Remote IPC – Receive Operation 
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Figure B-3. Remote IPC –Wait Operation 

 
Figure B-4. Remote IPC – Send Operation 
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APPENDIX C - GENERALIZATION FUNCTIONALITIES AD 

DuplicateHandle

a

SourcePID=GetPID[SourceProcessHandle]

TargetPID=GetPID[TargetProcessHandle]

OriginHandle in 

{x : SourceHandle in DupH[x][SourcePID]}

DupH[OriginHandle][TargetPID]+=TargetHandle 

DupP[OriginHandle]+=TargetPID

b

2

DupH 

DupP

DupH 

DupP

DupH 

DupP

 
Figure C-1. Handle Duplication Functionality 

 
Figure C-2. Process Generation Functionality 
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Figure C-3. Code Injection Functionality 
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APPENDIX D - FUNCTIONS UTILIZED IN GENERALIZATION A LGORITHMS 

AddParallelFunct(F.AD OriginAD, F.AD NewAD, OriginA D.Nodes Fork, 
OriginAD.Nodes Join) 

It adds AD of NewAD functionality to AD of OriginAD functionality as a parallel flow 
that starts right after the node Fork and joins to Origin AD just before the node Join. F.AD means 
set of AD of all functionalities. 

NewNode=AddParallelNode(F.AD OriginAD, ∪O M  NewOperation, OriginAD.Nodes 
Fork, OriginAD.Nodes Join) 

Creates node representing an input operation (NewOperation) and adds it to OriginAD 
functionality as a parallel flow that starts right after the node Fork and joins to Origin AD just 
before the node Join. This function returns added node NewNode. ∪O M  is a set of objects and 
manipulations. 

NewNode=AddNextNode(F.AD OriginAD, ∪O M  NewOperation, OriginAD.Nodes 
ParentNode) 

Creates node representing an input operation (NewOperation) and adds it to OriginAD 
functionality right after the node ParentNode. 

AttValue=GetAttributeValue(AD.Node.State Node, AttL ist(Node) Attr) 

Returns value of the attribute Attr of the node Node. 

SetAttributeValueExpression(AD.Node.State Node, Att List(Node) Attr, String 
Expression) 

Sets attribute expression for Attr attribute of the state node Node of the current AD. 

SetNodePIDExpression(AD.Node.State Node, String Exp ression) 

Sets an expression assigning PID of the node Node. 

NewVarName=CreateNewVar(InputAD.Arcs Arc, String Ex pression) 

Introduces a new variable to the current input AD arc (Arc) that is defined with the 
assignment expression (Expression). The assignment expression may use output attributes of the 
parent of the arc and other global variables. This function returns name of the newly created 
variable. By current AD we mean AD being input of the algorithm. 

InputAD.Nodes.State Node=GetAssignNode(InputAD.Vars  Var) 

Searches for and returns the node in current AD which output arc assigns variable Var. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

ActiveX – framework for defining reusable software 
AD – Activity Diagram 
ASLR – Address Space Layout Randomization 
BBIDS – Behavior Based Intrusion Detection System 
CPN – Colored Petri Net 
CPU – Central Processing Unit or Processor 
C&C – Command and Control (botnet C&C) 
DEP – Data Execution Prevention  
DNS – Domain Name System 
FTP – File Transfer Protocol 
GSR – Gene of Self Replication 
ICMP – Internet Control Message Protocol 
ICQ – Messaging protocol 
IDS – Intrusion Detection System 
IRC – Internet Relay Chat 
MIME – Multipurpose Internet Mail Extensions 
MS – Microsoft Corporation 
NIDS – Network based Intrusion Detection System 
OS – Operating System 
PLC – Programmable Logic Controller 
TCP – Transmission Control Protocol 
 


