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1 INTRODUCTION

Our ever-growing dependence on computer networkaccmpanied by ever-growing
concerns about the network’s vulnerability to imh@tion attacks and the dependability of the
existing network security systems. Major threaisnprily stem from increasingly sophisticated
self-replicating malicious software. At present,reathan 700 million computers are connected
to the Internet and their numbers are growing fgpjt]]. Every year, thousands new public
vulnerabilities in security systems are revealed] at any given moment of time millions of
vulnerable computers are connected via the Internet

Sophisticated adversaries detect and utilize valsler computers to carry out various
attacks. Many attacks are performed in a compledatpmated fashion and spread throughout
the Internet at the speed of light without regacd geographical and national borders.
Technologies utilized by malicious software aredmeing more and more complex. In some
cases attacks are completely concealed and camnoévealed without a thorough analysis
delaying both detection and mitigation effortsmany instances attackers intend to compromise
computer network security systems, rendering theeffactive. Moreover, poly- and meta-
morphism are commonly utilized by attackers to mize the efficiency of traditional anti-virus
software tools that are dependent on gigantic, icootisly updated databases. Fortunately,
Intrusion Detection Systems (IDSs) utilizing belwal signatures to match malware activity
rather than its binary structure are immune to bimgry morphism.

The research presented in this report is aimeteatévelopment of semantic approaches
to behavior analysis in a scalable dependable N3&m. It resulted in a signature based IDS
approach that was implemented, tested and chazeter

Section 2 discusses the modern malware and as=té&iands, malware classification, and
a review of the limitations of conventional antrg technologies. First, various types of modern
malware, statistics and emerging trends in malvd@eelopment are presented. Secondly, this
chapter reviews modern anti-virus products andudises limitations of technologies currently
used to detect malware such as binary signatueesistic analysis, and behavioral detection.

Section 3 presents taxonomy of the typical basibvar@ functionalities that could be
attributed to the “essence” of malicious activily. particular, self-replication mechanisms as
well as malicious payloads are analyzed. Threestyglethe self-replication mechanism are
discussed, including: binary self-replication, s#fgide replication, and client-side replication.
Moreover, malicious payloads are classified andyaed, including: persistence mechanisms,
delivery and communication mechanisms, data acquieehanisms, offensive payloads and
others.

Among the known malicious activities, self-replicat is an example of a highly
discriminative and indicative malicious functiorgaliObviously, there is no reason for legitimate
software to self-replicate, since it can be disti@al by legitimate means (e.g. downloads and
install, trial etc.). Hence, computer security eesbers are very interested in self-replication
phenomenology.

It is important to be able to reliably detect selplication as a specific functionality.
However, before detecting it, it is reasonable thatshould model self-propagation in order to
investigate and estimate the possible impact &f filmctionality on network resources. Such a
model would allow for selecting the most adequateans for both attack detection and
mitigation.



Section 4 presents the developed signature bas8dafiproach. This approach detects
malicious functionalities in the system call domasing generic and highly semantic signatures.
Such an approach is superior to existing behavaset techniques in addressing behavioral
obfuscations and multiple functionality realizasonBasically, the proposed IDS detects
intrusions at the highest semantic level — the tional level, which is semantically higher than a
simple behavior due to the fact that behavior isatyea manifestation of one of the realizations
of functionality that could be obfuscated. Whilgrature-based, behavior-based IDSs (BBIDS)
have obvious advantages, however they could stifften three interrelated problems: poor
signature expressiveness, behavioral obfuscatidnram-time signature matching inefficiency.
The research presented in this chapter descrileeddahelopment of novel, system call domain
IDS that addresses both existing and future chgélerof BBIDS. In particularly, we propose an
approach to specify the functionalities of interegtecifically malicious ones, by using activity
diagrams (AD) in terms of generic behavioral cangs. The resultant AD would incorporate
multiple realizations of the specified functionglihence increasing the semantics and
expressiveness of the signature. An AD signatureldvbe automatically generalized to address
existing and potential behavioral obfuscation teghes. Finally, a procedure is presented that is
capable of automatic conversion of activity diagsanto colored Petri nets (CPN) defined in the
system call domain, to be used by IDs for run-tiemognition of the specified functionalities.

Section 5 presents a comprehensive experiment&liagian of the proposed approaches
that were implemented in a prototype IDS. An experital evaluation of the described
technology was conducted on the virtual networkoess at Binghamton University [2], [3]. The
testbed was configured as a virtual network coneprisf dozens of victim hosts represented by
virtual machines with vulnerable versions of WinddwDS and our prototype IDS. The IDS was
evaluated on hundreds of legitimate programs arem of malware that had various types of
replication engines and payloads. The experimergallts indicated extremely low false
negatives and false positives. Finally, we perfatraeeries of experiments to determine the run-
time overhead induced by the IDS. This overhead wssmated based on established
benchmarks. The results indicated that the IDSrneculess than 4% of the CPU utilization
overhead.

The results of this research were presented dotlwsving conferences (proceedings) and
journals:

1. Military Communications Conference (three papdw),COM 2011, Baltimore, MD, USA

2011

European Symposium on Research in Computer Se¢d®9®RICS), Athens, Greece 2010.

Military Communications Conference, MILCOM 2010,nS#ose, CA, USA 2010.

International Conference on Security and Managen®a1'10, Las Vegas, NV, July 2010

Conference on Future Challenges in Network SecyRtyNS), Prague, Check Republic,

June 2010

International Conference on Security and ManagensHi1'09, Las Vegas, NV, July 2009

27th IEEE International Performance Computing andm@unications Conference,

(IPCCC), Austin, TX, Dec. 2008

8. Problems of Information Security. Computer Systddwurnal), issue 3, Moscow, Russia,
2008 (in Russian)

9. Journal of Information Assurance and Security, 2oissue 2, pp. 107-116, 2007.
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10. Third International Symposium on
Manchester, England, August 2007

11. International Conference: “Mathematical Methods,ddls and Architectures for Computer
Networks Security”, Sept. 20, 2007, St. PetersbRrgssia.
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2 MODERN SECURITY CHALLENGES TO COMPUTER SYSTEMS

Malicious software presents the most prominentathte modern computers systems. The
first example of malware was a computer virus dgvedl almost thirty years ago for Apple
computers [4]. At that time, most of the early cangp viruses were limited to self-replication
and had no specific payload. Since then malwardveddrom academic proof-of concepts in
middle 1980s to script-kiddies attacks in late 19@Md finally to underground market and
targeted attacks since 200€.g. Zeus botnet, StuxNet worm). As a result, yodalicious
software is used to achieve a wide range of admergaals. This includes everything from
remote access to local sensitive data to full @rdf segments of information infrastructure
such as servers, network appliances and even nalusintrollers.

This chapter presets general discussion of the madalware and their associated trends;
malware classification; and review of the limitaisoof conventional anti-virus technologies.

2.1 Description and Classification of Modern Malware

Malicious software (malware) is software that isigeed to secretly access a computer
system without the owner's informed consent [5]Iviae is a general term meaning a variety of
forms of hostile, intrusive, or annoying softwaregpoogram code.

This section describes various types of modern @mua@whe associated statistics and some
emerging trends in malware development. Malwareclassified according to well-known
notations and terms formalized by the computer rfigocommunity (e.g. anti-virus vendors) [6],
[7]. Note that this section focuses on malware sypaly. Further discussion on malicious
functionalities and behavioral taxonomy is givertha next chapter.

Today, the cyber-security community distinguishesseen the various types of malware
depending on their main purpose or intentions §jne of these are defined and described
below.

2.1.1 \Viruses

The first use of the term “computer virus” is ditried to Fred Cohen in 1983. Fred Cohen
originally defined a computer virus as a prograat ttan "infect" other programs by modifying
them to include a possibly evolved copy of its@ifaditionally, viruses only infected the local
host executable files during propagation. Howetatay viruses can self-replicate by infecting
many file types such as MS Word files (macro vifdgJobe PDF files (script virus), script files
etc. Also virus activity is no longer limited tdacal host. A virus can also infect files located o
network shares, cloud drives and removable media.

2.1.2 Worms

A worm is a form of self-propagating malware thptemads inter-host over the local/wide
area network and also via the Internet. The mdferénce between a worm and a virus is that a
worm transfers its binary image to the victim maehwithout injecting its code into any host
files. While a virus, by definition, proliferateg bnjecting itself into a host file on the victim
machine.

Depending on the propagation vector, worms couldclassified into the following
categories [7]:



. E-mail worms. This worm sends itself or a linkt®image as an e-mail attachment.

. P2P worms. This worm proliferates via public P2 $haring networks.

. Network worms. This worm propagates to hosts byatipg vulnerabilities in publically
exposed services. Since such a worm does not esgs@r action, it could spread very fast
causing large scale epidemics.

. Instant messaging and IRC worms. This worm sendskato its image via instant
messengers or IRC, e.g. ICQ or Skype.

After getting deployed to the remote host, wormtemfestablish various backdoors,
disable security tools, and install bot agents. @©ctmmpromised, these systems become part of
what is known as a “zombie” network.

2.1.3 Trojans

A Trojan horse is malware pretending to be beniguseful software. When activated,
Trojans perform unauthorized actions such as daotigcmodifying, and forging data. Unlike
viruses and worms, Trojans by themselves do nétraglicate. Hence, Trojans are delivered by
some type of self-replicating malware as a payloatly so-called downloaders. Also, Trojans
can be delivered via a social engineering attackdywincing victims to download and execute
their code.

Depending on the actions performed, Trojans falo inhe following classes [8]:
downloaders, spyware, keyloggers, backdoors, diatansom, proxy, clickers, and adware.

Downloaders are small programs that download astlinother malware such as adware
and spyware. Some downloaders also configure theoQ6n the downloaded malware during
system startup.

Spyware is a type of malware that steals sensttata such as a user’s credentials, bank
account information, web service passwords etchSiata is transmitted to adversaries via
various channels including FTP, e-mail and everedashannels (e.g. DNS reverse tunnel).

Keyloggers monitor and record various system eveuath as mouse clicks and pressed
keys. Usually, keyloggers are used by spyware tioega user’s credentials.

A backdoors is a specific type of malware thatrafits to grant unauthorized external
remote access to a host. It is usually achieverhther simple techniques such as remote shell,
but there are some sophisticated backdoors thattheagselves have system functionality that
enables remote system control. Backdoors are yswséd to steal personal information
including login details, e-mail addresses etc. Mueg, covert backdoors are frequently used to
control botnets made up of compromised zombie nmashi

Clickers, Adware, Dialers and Ransom represent aya&\ior profit that forces the user to
pay money to adversaries or buy pay-per-use serwitbout a user’s consent.

2.2 State of the Art of Anti-Virus Technology: Limitati ons and Disadvantages

In 1987, the German hacker Bernd Fix presentedir$teanti-virus software that was able
to detect and neutralize the Vienna Virus [4]. 8itleen, the market for anti-virus products has
received much attention, and has led to the dewstop of more than sixty anti-virus products.
In spite of such development, for the most partj-@rus products still rely on old, binary
signature based technology to detect malware [k fechnology detects malicious software by
matching file images to binary patterns of all kmowalware that are stored in gigantic,
continuously updated databases.



In an attempt to avoid signature-based detectiost msophisticated attackers currently
utilize polymorphic and metamorphic worms that alde to continuously mutate, i.e. change
their binary composition without changing their m@lus payload. As a result, the number of
binary signatures of malicious codes that needetstored and utilized for successful attack
detection continues to grow exponentially, see &du below. This trend indicates that in the
near future virus detection will consume a sigaifit percentage of a computer’s finite
resources. At the same time, reliance on the knoiwary signatures implies that in principle it
cannot detect new, previously unknown malware.

Kaspersky Lab
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Figure 1. Number of Binary Signatures of Malware (8urce: Kaspersky Lab)

To deal with unknown malware, advanced anti-viruses heuristic analysis that utilizes
generic signatures to match classes of malware.edery such technology generates false
positives and has rather limited efficiency. Fig@rshows that the detection rate of heuristic
analysis is at most 65% and is only 40% on avejagje

On the other hand, there is an alternative to irsagnature-based intrusion detection.
Generally, malicious software and infected legitienaoftware demonstrate specific behavior
patterns that are atypical for legitimate softweé@eme advanced anti-virus products such as
Kaspersky, Symantec and ThreatFire perform dynanalysis of program activity to detect
malicious behavior. However, such products usuake into account only individual OS object
operations and are also limited to a single processther words, such anti-virus products do
not correlate the behavior of multiple processes @njects to recognize a complex malicious
pattern. As a result, such systems are only ablietect primitive and obvious misuse such as
access to a system file, starting a particular ggscr loading a device driver. While such a
behavior could be exhibited by many types of madyénis same behavior is also exhibited by
legitimate software (e.g. system tools).
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In our observation, behavior by itself is not mialis; however the goals or functionalities
of the malware are malicious. It is very importempoint out, that the total number of malicious
functionalities is fairly stable, and the only thinthat changes is how often particular
functionalities are utilized (see Figure 3). Invegta new malicious functionality requires
significant effort and is typically beyond the meaof most attackers. Consequently, when
malicious code mutates, it implements the samecmab functionality in spite of the variations
in its binary code. Moreover, developers of new patar worms are destined to utilize the same
malicious functionalities again and again (for epéarself-replication engines).
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Figure 3. Utilization of Malicious Functionalities (Source: Trend Micro Inc.)

Taking into account the above considerations, it cigtical to detect complex
functionalities, rather than merely simple behaviuch functionalities may involve interrelated
sessions of object operations. For instance, wpga®to detect the following sophisticated and
highly semantic functionalities: password theft, linpartite self-replication or self-concealing
using third party rootkits. The complexity and hitgvel semantics of these functionalities
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allows for confident discrimination of maliciousisda the program activity with minimum false
positives.

In order to detect malicious functionalities, finse must define, classify and analyze
existing and potential malicious functionalitiehieéTnext chapter is dedicated to the taxonomy of
malicious functionalities which covers most knowmdaconceivable malicious functionalities
that each has a very distinctive footprint.



3 TAXONOMY OF MALICIOUS FUNCTIONALITIES

3.1 Definition of Software Functionality

Let us describe the software behavior and funchignexecution in Microsoft Windows™
operating system (OS). This OS provides systemurses and services to processes through
executive objects that are maintained in the Ke(Rejure 4). In order to access a particular
resource or service a process creates a corresgpithect such as a file, process, thread,
memory section, etc [11]. Every object has its @@hof operations which are exported to user
mode processes through system services (systes¥.chilthe user mode, such system calls can
be invoked directly or more conveniently throughsgstem API functions.

‘ Process 1 ‘ ‘ Process 5 ‘ ‘ Process 12 ‘
‘ Process 3 ‘ ‘ Process 4 ‘ ‘ Process 5 ‘
Functlor::\l;gl Functionality 1 Functionality 2 Functionality 3 | e @ @

/ N

DLL SXgls)l'teml API1 || API2 || API3 || API4 || API5 || API6 | @ @@ |APIN
s Arlleve User mode
System calls Kernel mode
Yyvy YYYy vvy Yy \ A LA Yyvy
System service executive, object manager
Operations
Y Y y Y Y Y Y Y Y Y Y
. . “Memory section” .
“File” objects ; “Process” objects
) objects | (N X )
handlet [ handle2 [ e o o handlet [ handle2 [ e o o handlet [ handle2 [ e o o

Figure 4. Functionality Implementation at the Systen Level

Processes invoke API functions or system calls rieioto perform object operations
(manipulations) that complete some semantically distinct actigrgsih as writing data to a file
or sending data to a specified IP address. Consdlgueve define individual functionality as a
combination of those actions that achieve a certajh-level objective.

2 In Unix based systems such services are callegraysalls, while in Windows they are called exegitsystem services.
Hereafter, we stick to system call term.

% Here, we use terms “Operation” and “Manipulatiémierchangeably, because both of the terms are eitedsively in the
literature.
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It is important to understand the difference betweefunctionality and behavior. The
behavior of a process is what the process does given stage, while the functionality
determines the semantic goals of the process. Har atords, behavior simply manifests the
realization of functionality. As a result the majlmitation of the existing behavior-based
specifications is that they can fail when dealinghwmultiple realizations of the same
functionality. This motivated us to develop a nosgécification free from this limitation.

3.2 Taxonomy of Malware Replication Functionalities

Today, major threats primarily stem from self-repting malicious software such as
worms and file viruses. Self-replicating malwares tevo basic components, a payload and a
replication mechanism. The payload functionalitiesmally perform some malicious activity on
the victim host, while the replication mechanisnsues its most essential feature, the self-
replication. While any set of functionalities caonstitute a payload, most attackers inherently
rely on existing self-replication engines.

Self-replicating malware can be divided into threajor classes: network worms, e-mail
worms (trojans) and file viruses [12], [13]. Whikhe replication mechanism is usually
determined by the type of malware, some malware¢amtes utilize multiple replication
mechanisms; however, these malware does not irteodu conceptually new type of self-
replication.

Based on the attack vector, one can distinguistwdet the following replication
mechanisms:

. Binary self-replication (used by file viruses)

. Network based (server-side) self-replication (usgdetwork worms)

. Client side self-replication (used by trojans anadal worms)

. These replication mechanisms are described inlg@taihe following sections.

3.2.1 Binary Self-Replication

File virus replication mechanisms were analyzed3jp There are basic types of virus
replication techniques:

. Overwriting existing files (Overwriting viruses)

. Creating new look-alike files (Companion viruses)
. Attaching to existing files (Parasitic viruses)

. Injecting itself to empty spaces in PE (Cavity ge8)

An Overwriting virus replaces existing executabtat® code section with the body of the
virus. A Companion virus renames (or moves) antiexjsexecutable and replaces the original
with a copy of itself. The virus then runs the wiakzed binary after executing its own body. A
Parasitic virus infects an existing executable fijgdting its code into the executable body and
replacing code entry points. Cavity virus can ihjeself to the PE header or unoccupied portions
of PE segments. Such a virus does not change #ralbkength of the host file.

The authors in [3] proposed tracking semanticatiynfive functional blocks such as file
search, memory mapping, file copy etc., and to thmbute their combinations to a so-called
Gene of Self Replication (GSR). However, a GSRniy defined for file viruses and it does not
allow for tracing alternative realizations. Moreovedue to the token dynamics, the CP-net [14]
recognition mechanism is more efficient than the proposed in [3], i.e. state machines.
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3.2.2 Network Based (Server-Side) Self-Replication

Servers connected to the Internet usually exposgces that clients can interact with.
Moreover, most hosts in a local network provideesal publically accessible services that
potentially could be compromised. This includewvisess such as RPC DKOM, Remote Desktop
etc. After the appearance of the first high-profiietwork worm in 2001 (Code-Red) that
exploited a vulnerability in a server service (MS)Iserver-side vulnerabilities became the most
convenient attack vectors for self-replicating madevsuch as network worms including Sasser,
Welchia, Blaster etc. [15].

To estimate tendency of network worm generation araghagation engine utilization in
modern worms, we analyzed 25 network worm familreduding: Sasser, Welchia, Blaster,
Slammer and Mytob. The propagation engine typeeémh worm was determined based on the
anti-virus databases as well as by reverse engmgeand analyzing particular strains of the
worms. It was observed that more than 60% of thensause the “bind shell” engine. “Reverse
shell” and “executable download and execute propagaengines were shared by 30% of the
worms. Less than 10% of the worms utilize otheresypf the engines such as thread injection,
remote command execution, and others.

A typical “Bind shell” engine opens a network setkport) and listens to the socket until
the intruder is connected to the port. Then theneotion is accepted and the shell code starts a
command interpreter, for instance “cmd.exe”, sudt tnputs and outputs are tied to the socket.
These actions cause the “cmd.exe” process to lisiercommands and execute them. The
previous three steps are performed by the explgiextess as shell code. The final steps
thencomplete the propagation. It could be seenth®tttacking host simply passes commands
to make the victim host download worm executablgecand run it.

The “reverse shell” engine is very similar to thiadoshell. However, in order to avoid a
firewall, the shell code automatically connectstiie intruder, and instead of waiting for a
connection from the intruder. From this point dre temaining steps are identical.

The “executable download and execute” engine parfiie entire propagation in the shell
code without post-activity as is performed in thvstftwo engines. In this case, it simply creates
a socket, establishes a connection to the intraddrretrieves a copy of the worm through the
established channel. The shell code usually uggs Ievel protocols such as http to download
the worm, but sometimes it downloads a worm diyettirough the channel simply using
transmission control protocol (TCP).

The above considerations indicate that worms frioensame family tend to share the same
propagation engine(s). The number and type of gaan engines is limited. In the first stage
of the propagation session, the worm shell codexecuted by the compromised process. To
achieve the propagation effect, the shell codetbagilize system resources via various API
functions. As a result, each type of shell codeitsaswn system call execution pattern.

A new trend in shell code development can be aitieidh to so-called client side (one way)
shell codes that provide access to the victim’'simmecwith a minimized system footprint. Such
shell codes include: find socket, reuse socket, D&i#rse tunnel, and HTTP reverse tunnel
[16].

Find and reuse socket shell codes do not creagsvasacket, they simply utilize the socket
of the existing connection through which the vicpnocess was exploited. These shell codes are
implemented similarly to the standard Bind-Shellhathe difference being that the socket is not
created, but instead the code enumerates handlesvahd checks the remote port through the
“GetPeerName” API. At the system call level the BstrName API is recognized as a command
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to the AFD.sys driver with specific control codeeented via the NTDevicelOControlFile
system call.

The DNS reverse tunnel shell code implements aemddhannel through which the worm
image is transmitted to the victim machine. In ttése no dedicated connection is established,
and no file or object download is performed (eig. MTTP). The only activity the victim host
exposes is making DNS requests. These requestsimiar to those that are frequently
performed by any host connected to the InterngerAhe shell code makes a DNS request to a
malicious DNS server, the server sends a fake Dd$fSanse containing a small piece of worm’s
binary code to the shell code. Then the shell cedeives the worm image piece by piece,
decodes it, reconstructs the code and eventuadiguggs it.

3.2.3 Client Side Self-Replication

Historically, the majority of network worms propagahrough server-side vulnerabilities,
but over the recent years it has become increasdifficult to use server-side attack vectors for
the following reasons:

. A move towards secure/hardened implementationgstés) and production software (less
vulnerabilities on servers)

. More frequent patch cycles for publicly accessgdevices

. Prevention of remote code execution in criticav&®s using techniques such as DEP4
and ALSR5 [17]. Avoiding these techniques (e.gumeforiented programming, heap
spray) significantly increases exploit and shetledevelopment time [18]

. Utilization of network-based intrusion detectiors®ms.

. Network fragmentation that builds a defense in lkdeffirewalls, external vs. internal
network vs. DMZ )

On the other hand, client-side attacks are quithffarent story. These attacks exploit
vulnerabilities in client applications, such as walowsers and office application suites, that
process malicious data from servers. Today, ckefg-vulnerabilities are the most popular entry
points for attacks. This is supported by the faett,tthe vast majority of vulnerabilities (more
than 93%) that have been exploited in recent yhax®e been on the client-side [19]. These
vulnerabilities are located in various applicatiosach as web browsers, file readers, office
suites and ActiveX components. As a result, in megears majority of the malware has been
propagating via the following web attack vector8][2

. Browser vulnerabilities

. Adobe Flash vulnerabilities

. ActiveX vulnerabilities

. Adobe Acrobat Reader vulnerabilities
. Apple QuickTime vulnerabilities

* DEP — Data Execution Prevention is Microsoft inmpégion of “Write xor Execute” feature that does alow
for executing injected code (e.g. potentially stbpfer overflow exploit).

® ASLR — Address Space Layout Randomization. Prolester technique (feature) which arbitrary arrantye
positions of key data areas, usually includinglibse of the executable modules (dll entry pointe&ap, and stack,
in a process's address space. ASLR prevents pespeution of an injected shell code. This technigpas utilized
by Microsoft for system processes containing altgervices. User applications (e.g. MS Internetser) did not
use such technique due to compatibility reasons.
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. 3rd-party plugins, widgets/gadgets, banner ads
. RealPlayer vulnerabilities

Since client-side attacks affect individual workistas that are located inside the perimeter
protected by network security appliances such rasvéills and NIDS, such an attack could be
viewed as an insider threat. Some attacks, sudniasby install, represent normal behavior and
are initiated by an unwary user. After obtainingntol over the exploited client application, the
attacking malware (shell-code) has enough systévigmes to propagate itself.

A client-side exploitation can be different fromethlassical server-side exploitation. This
does not necessarily mean that remote code exac(d#ig. buffer overflow), will occur, for
instance a JavaScript could “legitimately” use artiveX component to overwrite a file that is
scheduled to be executed by the OS itself. Howekerfunctionality of the shell code chould be
identical — namely, the delivery of malware.

Due to the isolation of the workstation from thdesral network (i.e. firewalls, NIPS),
client-side shell code is destined to use normalneotions, protocols and services that are
allowed by the network/host security policies. Fatance, in the case of a web-browser attack
vector, the shell code can use the same http sedbiat is used for normal data exchange, to
transfer the malware binary. The client-side deliv@aechanisms could be roughly classified as
follows:

. Drive-by install (social engineering attack)
. Drive-by write
. Drive-by download

Drive-by install is an example of a social-engimegmattack requiring cooperation from an
unwary user [21]. Usually, a drive-by install issdsfor delivering special types of malware such
as spyware and adware. This malware can be distdbusing various scenarios including:
convincing a user to download malware (e.g. fa&stflplayer) from the malicious web-site (e.g.
continual prompting); sending an email with malwateched; as a bundled and chained install
with some other third party software; and finallg peer-to-peer installation.

Generally, a drive-by install delivery is perform#dough a self-mailing engine that is
used by e-mail worms that may have Trojans in thayloads. In this case, a typical self-mailing
engine constitutes a particular functionality thatforms at least two essential tasks:

. Load the malware image into memory
. Send the image as an attachment with the e-mthktoictim address

While image reading (loading) is a trivial task foemed by a standard subsystem API,
sending an e-mail requires using a mail protocohsas: SMTP, ESMTP or SMPT-AUTH. The
e-mail consists of a header and a body that matasoan attachment formatted according to the
MIME standard. The message is sent to a mail re@yer (or MTA) through SMTP. While
message formatting does not involve any systens ¢alily simple memory manipulations),
message sending utilizes network resources exptitedigh an APl (ws2_32.dll). While the
SMTP functionality performed by any Mail User Agdetmail client) or MTA (mail exchange
server) is absolutely legitimate, such softwaredssupposed to send its image as an attachment
with the message that is being sent.

The drive-by write delivery mechanism may use sgeculnerabilities that allow for
saving a file (e.g. picture). For instance, a shetle may directly overwrite or infect a system
file using JavaScript and vulnerable ActiveX exporAnother technique would be using
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ActiveX components to modify the windows registngdaexecute malware. Clearly, such a
technique requires having a malware binary thatfitould be partially contained in the exploit
data and then later be reconstructed by the sbed.c

Drive-by download propagation implies transferritige malware image using various
available mechanisms. The shell code can use Att(davaScript) to download malware, or
retrieve an image via an http channel using a leyel APl such adnternetOpenURLand
InternetReadFile(wininet.dll). However, to physically transmit tifée, all such high level
functions eventually utilize standard APl and systealls such as: socket, connect, send, recv,
(ws2_32.dIl).

Another technique for downloading the malware, wundlee conditions of strict
connectivity policy, is to utilize a so-called cotvehannel. A covert channel implies transferring
data using system mechanisms that are not blocketherked by existing network security
appliances (e.g. firewalls, NIDS, web proxies) [18lich covert channels could be arranged by
using already existing connections, for instandedihg and reusing an opened socket (i.e.
socket reuse shellcode). Another way could be écauBNS service to establish a so-called DNS
reverse tunnel that was described previously. Agaisly, one could use an ICMP reverse
tunnel that works by sending an echo request paoketremote malicious host. The remote host
replies with another ICMP packet that contains alspart of malware binary code. This way a
client can receive the entire malware image, piBcpiece.

3.3 Taxonomy of Malware Payload Functionalities

Recent attacks on information systems demonstrateeady increase in the quality and
sophistication of newly deployed malware. To beeif/e, host defense technologies such as an
intrusion defense/detection systems (IDSs) musk oefth continuing advances in intrusive
technologies. The net result is an escalating "arat®" between malware and the IDSs.
Generally, malicious technology develops along twajor directions: delivery mechanisms
(new attack vectors, propagation hiding etc.) amdsigtence mechanisms, such as self-
concealment or self-protection. While the delivergchanism is a critical part of malware, self-
propagation based delivery can successfully bectisteand prevented as described in papers [3],
[2]. A substantial part of today's malware does self-propagate, instead it is delivered by
downloading and running camouflaged Trojans. Thagetypically initiated by the legitimate
behavior of an unwary user. Hence, detection ofqgaayfunctionalities including the persistence
mechanism becomes extremely important.

After getting deployed on the victim host, malwaxens its payload functionalities.
Usually its payload corresponds to the malware ,tgpg. downloader, dropper or backdoor. In
our view, payload functionalities could be distirgiied by their purpose according to the
following categories:

. Persistence mechanism (self-concealment, self-qirote etc.)

. Delivery and communication mechanism (commandsywsoé download, etc.)
. Data collection / acquisition mechanism (key-loggatwork sniffer, etc.)

. Offensive payload

. Other

Malware persistence mechanisms have received signifattention since they allow for
concealing and protecting deployed malware. Suchni@ogy represents a major challenge for
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the IDS since it impedes the intrusion responsélelra presents the most popular persistence
mechanisms including User level [22] and Kerneklgechniques [23].

The delivery and communication mechanism is usugbd by network bot agents to relay
and execute control commands to a victim host. Téreyalso used to fetch new updates for
deployed malware. Some standard mechanisms arenpeesin table 1.

The data acquisition mechanisms are typically umespbyware to mine the user’s sensitive
information (e.g. user credentials) or user/hoshab®ral statistics (web surfing). This
information is then transferred to the adversaaytilie communication mechanism.

The offensive payload is the most malicious paylaatican cause significant damage
such as denial of network/server services, submersi anti-malware services and windows
blocker (back-mail malware). Table 1 summarizesniost infamous offensive payloads.

Table 1. Payload Collection

Payload Functionality Description
category
Camouflage malware image:
Mimicry e renaming its image
technique « appending its image to victim legitimate image
« external restructure of the image
Inject malicious code into victim process:
" e Thread injection
Injection based S
« Dllinjection
» Event spoofing
Multipartite Multipartite approach:
approach * Watchdog ager_lts_ _ N
Persistence * Inter-process dl_strlbutlon of the activity
mechanism Kernel level technlqges: o N
. » System call spoofing (SSDT substitution, malwasstgces hiding)
Root persistence : . ) : .
« Non direct object manipulation (reparse point, sdanemory)
« DKOM (process hiding, driver concealment)
Makes changes in the system to render security administrative
services useless:
OS service * Resets system restore points
subversion » Disable various security services (security, updateor reporting,
firewalls and anti-viruses)
» Spoof DNS service to block security content
Registry setup Makes modifications in registry teaage autorun of the malware image
or compromise host security
Creates small binary which contains selected palgl@nd is not able tp
Dropper .
proliferate.
Provides remote unauthorized access to the ho&t. miakes the host g
Delivery and Backdoor “zombie” machine. To avoid firewalls, such mechamisiay use several
communication channels such as direct TCP, covered ICMP, coveNs etc.
mechanism System call proxy| Executes system calls with aitab received from C&C center
Downloader Periodically downloads update malware
. Forms and massively sends e-mails potentially totamis from local
Spam engine
address book.
Credential stealer] Hidden module which monitoes'ssactivity to steal user credentials
Data acquire Key-logger Intercepts and logs key strokes
mechanism Traffic sniffer Records packets, acquires netwaakistics
Web sniffer Records web surfing statistics
Offensive DoS Performs Denial of Service (includ®§ lock)

15



payload Auto-dialer Dials expensive phone calls causing financial fosshe victimized user

Windows blocker | Denies access to OS and data until a user paysama

Added harmless (commercial) functionality in thipdrty environment
Adware ;
Other e.g. toolboxes in IE.
Rouge Fake anti-virus activity

3.4 Functionalities of Next Generation Malware

3.4.1 Targeted Attack

A new trend in malware development is highly prefesal and targeted attacks that
achieve very specific goals. One such exampleasStiuxNet worm that was the first publically
known computer worm that targeted a specific indalssystems/processes. The ultimate goal of
the worm is to alter/reprogram the control processka particular industrial plant. Exactly
which one was targeted still remains unknown, ha@wev majority of the attacks took place in
Iran [24].

Due to the target specific nature of the wormnipéoys several functionalities to conceal
its activity and to help it keep a low activity fite. Such functionalities include:

Controlled self-propagation that is achieved byitimg the number of generations of the
worm — this prevents burst-like epidemics, helptrigeep a low profile.

The use of multiple attack vectors to self-propagagd USB removable drives and local
network. The range of 0-day vulnerabilities that BtuxNet exploits allowed it to proliferate
over various Windows™ OSs including Windows 200@, Xista and Windows 7 [25].

The use of rootkits to hide the worm binaries. @main stealthy the rootkits are digitally
signed with valid, but stolen certificates.

The use of centralized command and control (C&CGyeseand a decentralized peer-to-
peer (P2P) mechanism to allow infected machinesdquoest updates.

The targeting nature of the worm is evident dueht® fact that the worm uses various
techniques to precisely identify the system to thecied. The target consists of specific Siemens
hardware and software, such as certain Programmaige Controllers (PLCs) (6ES7-315-2
and 6ES7-417), and the WinCC SCADA (Step7 Sematiodér componerft)

Another functionality is the modification of the WECC SCADA communication library
(s7otbxdx.dll ). This allows a targeted PLC to h&cted by injecting worm’s blocks of STL
code and also hides the injected code from humaratgs.

The injected malicious STL code basically changesRLC behavior. In particularly, the
malicious code checks for incoming data to PLC [@dwe sensor data) and may modify and
post-process the data [24]. Theoretically, this rakgr feedback response of the control system
itself that may drive the plant to unstable phase eventually physical damage.

It is interesting to note that a particular blodkcode - block DB8061 is automatically
generated during the infection phase and its ctsepends on the data that is in targeted PLC
[24]. Analysis revealed that this particular bloock data is not present in the StuxNet and is

® PLC is a stand-alone industrial class digital catapthat controls equipment of a plant to maintadustrial
processes along with desired specifics. A Semdtic Rins assembly like code that controls the pl&@ADA
system is PC software that allows a human opetatononitor, remotely control plant's equipment aslivas to
update the code on PLC.
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generated when the PLC with a specific code isdodiis way the malware authors are able to
hide certain behavioral details of the maliciousCRiode.

In summary, a targeted attack such as the StuxManhwot only has a Windows rootkit
functionality but also PLC rootkit functionalitydhis concealed from the human operator. This
example clearly indicates that there has been dafuental shift in the security perimeter such
that it is no longer limited to personal computarsl has clearly been expanded to include
industrial computing facilities.

3.4.2 Behavioral Metamorphism

Today binary morphism is a common feature of modeaiware. Given the extensive
development of behavioral based IDS, it is expet¢ted adversaries will employ behavioral
metamorphism as the next step in offensive infolonavarfare.

Currently, behavioral metamorphism has not recemegh attention, and as such has not
been studied or defined in the literature, howewagr,approach for behavioral obfuscation is
given in [14]. This approach implies the use ofesal/techniques to alter the realization of the
given functionality so that it would have a diffatdootprint in the system call domain. These
techniques obfuscate behavior by using single ggce multiple processes, i.e. a multipartite
approach.

From the perspective of the system call domairs b@havioral metamorphism could be
viewed as dynamic functionality obfuscation. ThH#edence here would be that the obfuscation
is performed at moment of functionality implemeiat (compilation), and that the
metamorphism is performed dynamically during thecetion stage.

As with intra-process obfuscation, behavioral metgrhism could be achieved by
randomly switching between alternative system meishas (e.g. network pipes, sockets, file
mapping etc.) to perform elementary operations sisctiata transfer or file data access.

Similar to multipartite obfuscation [14], anothgspaoach for behavioral metamorphism
would be dynamic scattering of malicious functidies among different benign processes so
that none of the processes would have a consisystem call pattern.

3.5 Conclusions

This chapter described the basic functionalitiegypical malware that could be attributed
to the essence of malicious activity. In particijarwe reviewed typical self-replication
mechanisms as well as several malicious paylodugeltypes of the self-replication mechanism
were discussed including binary self-replicatiorerver-side replication and client-side
replication. Additionally, malicious payloads werkassified and analyzed including persistence
mechanisms, delivery and communication mechanisiais, acquisition mechanisms, offensive
payloads and others.

Understanding malicious functionality is criticarfthe successful detection of malware
activity. The remaining chapters describe novehnetogies for malware detection based on
identification of malicious functionalities as analies and generic behavioral signatures.
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4 SIGNATURE BASED BEHAVIORAL DETECTION

Computer networks, being a critical component oé thational infrastructure, are
continuously subjected to information attacks. Tinest devastating attacks are perpetrated by
the deployment of self-replicating malicious softevdhat propagates through different media
and uses multiple attack vectors. Recent informaditbacks demonstrate a steady increase in the
guality and sophistication of newly deployed malvafo avoid signature-based detection by
most commercial IDSs, modern malicious software lesnpolymorphism and sometimes even
metamorphism. Fortunately, IDSs that effectiveljiag behavioral signatures to match malware
activity, rather than its binary structure are inmado binary morphism.

AD

Specification
’ Alarm

Generalizer

Expert
Generic AD

High level
CPN

l CPN Constructor

Functionality

Low level Recognizer
CPN 2 4 1

CP-Net Subsystem level

object manipulations
Object Operation 3
Recognizer Information Flow
g Tracer

I

System calls

Figure 5. Architecture of Proposed IDS

While behavior-based IDSs (BBIDSs) have obviousaatikges, they can suffer from three
interrelated problems: poor signature expressivnéghavioral obfuscation and run-time
signature matching inefficiency. Signature expressess determines the success of an IDS in
detecting new realizations of the same malwareceSmost malware incidents are derivatives of
some original malware, a successful signature mapture invariant generic features of the
entire malware family. At the same time, the signatshould be expressive enough to reflect
most of the possible malware realizations. Behaviobfuscation is an emerging threat that,
given the extensive development of BBIDSSs, is etguedo become a necessary and trivial
feature of future information attacks [26].

The behavior of a program can be viewed as a nsatfen of the functionalities
implemented in the program. A particular functiotyals malicious if it performs some specific
activities intended for adversarial purposes. Discmg a malicious functionality in any
software qualifies it as a malware. Hence, the diete of malicious functionalities becomes
crucial and sufficient for confident malware deiet
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We developed a novel system call domain IDS thalres$es existing and future
challenges to BBIDSs. In order to achieve highgnaiure expressiveness, we proposed to
specify the functionalities of interest, speciflgainalicious ones, by creating activity diagrams
(ADs) in terms of both standard system objects abdtract behavioral constructs named
functional objects. The utilization of functionabjects and operations provides the necessary
level of generalization, yet it preserves discriatary properties of the specification. As a result,
such an AD would incorporate multiple realizatioos the specified functionality, hence
increasing the semantics and expressiveness sfghature.

We investigated possible approaches to behavidsisoation including inter-process
(multipartite) techniques. To mitigate obfuscatiore proposed an automatic generalization of
the AD specifications. We developed a set of gdizatgon algorithms that automatically
augment signatures, making them resilient to séwetaavioral obfuscation techniques, such as
object relocation and multipartite activity.

Finally, we developed a procedure capable of auticncanversion of activity diagrams
into the system call domain using Colored Petrs {€PNs). These are intended for run-time
recognition of the specified functionalities in tHgS. Our experiments showed that a CPN is
highly dependable and efficient for recognizingcfed functionalities in the flow of system
calls with data.

The system architecture of the proposed IDS is shiomFigure 5. In the learning phase,
an expert designs ADs representing known malicidusctionalities. The Specification
Generalizer module automatically augments the maigADs making them more generic and
resilient to obfuscations. The CPN Constructor gates a low-level and a high-level CPN by
processing the relevant ADs. The low-level CPN gatres individual subsystem-level object
operations in the system call domain and aggredlagesystem call information for processing at
the higher level. The high-level CPN recognizes #pecified functionalities in the object
operations domain. While simulating the CPN, Thedmizer accesses the information flow
tracer to feed data dependencies for particulasitians in the CPN.

As shown in Figure 5, at the detection phase thgdDperation Recognizer receives
system calls and utilizes the low-level CPN to iifgnsubsystem object manipulations. The
Functionality Recognizer then utilizes the highdeX”PN to assemble object operations into
particular functionalities.

The contributions of this research are as follows.

1. Increasing signature expressiveness and simplifyiagrocess of signature specification:

. Formal functionality specifications using ADs aifided at the abstract object level. Each
specification allows for capturing multiple altetiva realizations of a given functionality

. Separation of the specification domain (abstractdbfects) from the detection domain
(system calls). The abstract specification domdiowa an expert to concentrate on
conceptual realizations of a functionality omittiegrtain implementation details. The
detection domain allows for efficient functionalidetection in the system call flow by
executing the respective CPN that was obtained fraspecification.

. Automation of the IDS signature generation procdsdncludes computer aided AD
specification design, automatic AD generalizatidb, visualization and finally automatic
translation of the AD to a CPN that is used as gmaure in the intrusion detector
(Functionality Recognizer)

no

Mitigation of possible behavioral obfuscations:
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Analysis and classification of possible behaviatafluscation techniques
Automatic generalization of functionality specifias thus making them invulnerable to
behavioral obfuscation

w

Achieving high efficiency of signature matching:

. Automatic translation of an AD specification intdC&#N that recognizes the functionality
in the system call domain

. Efficient CPN simulator for recognizing specifiednttionalities in the flow of system
calls and flow of utilized data/information (avdila at http://apimon.codeplex.com as an
open source project).

. Prototype of information flow tracing engine (implented in IDA Debug)

To demonstrate our approach we implemented it jraotype IDS and tested it by
detecting several malicious functionalities thaé @mployed by network worms and bots,
including self-replication engines and various wialis payloads.

4.1 State of the Art in Signature Based Behavior Deteixin

Current commercial intrusion detection systems saaghntivirus packages primarily use a
signature based approach for efficiency reasonsweder, recent information attacks
demonstrate steady increase in the quality andistogdtion of newly deployed malware. To
avoid detection by most commercial antiviruses, emodmalicious software is at least
polymorphic and sometimes even metamorphic. Thsslt® in an exponential increase in the
number of signatures that need to be maintainedhbglern anti-viruses software (close to 5
million as of today, Kaspersky). Apparently, theality drives traditional antiviruses to a dead
end. It is interesting, however, to note that tlnher of distinctive malicious functionalities
(behaviors) has not changed. This is due to thetfet malware continues to use the same
functionalities to achieve the same goals. Hertos, ieasonable to detect functionalities rather
than binary patterns. Moreover, dynamic IDS utigzibehavioral signatures to match malware
activity cannot detect binary morphism.

The success of a dynamic, behavioral based IDSetsrmined by two aspects: the
expressiveness of the signature specification lagguand the efficiency of the recognition
mechanism. Moreover, usability of an IDS dependshenclarity and degree of abstractness of
the specification language. Below we survey thatexg behavioral specification languages and
discuss the advantages of our approach. Then w& Bbw our system is different and better
than similar, existing system call domain IDSs.

4.1.1 State-Transition and CPN Specifications

Kumar andSpafford developed the IDIOT system thailizes a variant of a CPN, termed
Colored Petri Automation (CPA), to detect UNIX st misuses?/]. Compared to a CPN,
CPA lacks concurrency, local condition variablesd aarc generative expressions. While
concurrency may be not critical for detection, atod variables and arc generative expressions
are vital for structural simplicity of the CPN regozing our AD specifications. Moreover, our
ADtoCPN procedure represents AD variables in CRINeapressions.

Helmer et al. utilized a hierarchical CPN and SafievFault Trees (SFT) as behavioral
specification for a distributed IDS [28]. First,ethCPN structure is obtained from SFT
specifications. Next, an expert defines CPN serosanfarc and guard expressions) that are
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responsible for processing monitored system/netwedats. The spirit of their approach is close
to ours in that it implies a separation of the #jmEation and execution domains. However, the
authors in [28] did not address generalization lelavioral obfuscation issues, which are our
main contributions.

Ho et al. proposed a Partial Order Sate TransiAomlysis Technique (POSTAT) to
specify both local and distributed attack scenatiag are matched by CPNs [29]. The authors
also give insight for creating a normalcy spectimathrough POSTAT.

Eckmann et al. proposed the STATL language for ifpeg misuse signatures in the
domain of interest (host or network) [30]. In STATansitions represent executed activity and
states represent the status of particular systgectsb While STATL allows for specifying quite
generic activity, the specifications must also eefflexecution semantics making the signature
description cluttered and complex. In contrast,deenot specify execution semantics in our AD
specification, since the AD is ultimately transtht@to the CPN that possesses the execution
semantics.

The problem of most state transition (ST) technsgige that the signature serves as a
specification and a recognition mechanism at tlmesame. Hence, ST signatures are specified
in the corresponding execution domain, e.g. systaifs, network low level activity, shell
commands, etc. For instance, for host based detean expert has to specify how transitions
should process system calls invoked by maliciotisiac Consequently, the specification would
be overloaded with implementation details makingatd to create and verify. In contrast, we
specification domain from the execution/detectiamdin. We specify functionalities at a high
level (object operations) and we detect specifigttfionality at a low level (system calls). As a
result, our specifications are quite readable amctiact, reflecting only critical malicious
activity at a high/abstract level, while omittingt level implementation details. In particular, in
our system an expert does not have to bother dmwta CPN processes monitored system calls
to recognize the specified behavior, because a €BMicture and semantics are automatically
built from a rather generic AD specification thautd be defined in terms of abstract functional
objects.

In summary, our approach differs from the abovehods in the following aspects:

First, the specifications in the above papers ddarmalize behavior in the domain of our
interest, i.e. system object manipulations; thesefuch specifications are not directly suitable
for automatic processing. In contrast, our AD folism is defined in the object operation
domain, thus allowing for automatic processing gederalization.

Second, the authors utilize a CPN as a behavigetification language, however we
utilize a CPN solely as a recognition mechanism.[dh we discovered that functionality
specification through a CPN in the system call donsatedious and hardly feasible for complex
cases, hence, we developed a simple and generioiialism for a functionality specification.
Afterwards, our ADtoCPN procedure translates theege AD to the system call domain with a
CPN serving as a recognition model.

Finally, our AD based specification is generic doethe use of functional blocks that
abstract certain system implementation detailspyetides enough agility for fine tuning of the
specifications.

4.1.2 Declarative and Algebraic Specification Languages

Examples of declarative languages are LAMBDA [34PelLe [32] and Sutekh [33].
Specifications based on such languages definerpatté actions involved in an attack, such as
the system pre and post conditions defined as afdeigh level predicates and then mapping
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between the actions and observable system evemseastad by the attack actions. While such
languages can express fairly generic attack saemahe complex scenario descriptions would
require specifying many abstract predicates thatldvdnave to be identified by the detection

mechanism. Runtime detection of such predicates imapse high overhead, and post alarm
verification of the predicates could be unfeasithie to changes in the system state [31]. In
contrast, we do not specify pre-conditions, becaadidity of the system patterns is verified by

CPN at runtime by examining system call outputs.

The aforementioned declarative languages allowrdtating attacks to one another by
matching the post-condition of an attack with thie-pondition of another one. Our approach
also allows for including one AD as a functionajem to the specified AD. At the CPN level
this would be realized as hierarchal CPNs.

The language of the CARDS [34] system introduceslastract system view that allows
distributed hierarchical attack specifications eéodefined in the domain of abstract events. The
detection language SHEDEL [35] takes advantage ah halgebraic and state-transition
approaches. As with [34], the SHEDEL specificatians explicitly defined at the abstract event
level.

Declarative languages are advantageous over ssaisitton specifications in their ability
to describe signatures at the pure abstract lewaitting operational details related to the attack
execution domain. To overcome this inherent linotaf ST languages, we proposed so-called
functional objects that serve as a system absteael on which AD signatures could be
specified.

Unlike state-transition specifications, most deafize and algebraic specifications do not
posses execution semantics. For the system cakhidohDSs based on declarative specifications
require a recognition mechanism that can expliaitigtch system calls with signatures. As the
result an IDS’s scalability ultimately depends dr tefficiency of the recognition/matching
algorithm. Usually runtime pattern matching is penied through some sort of state machine or
rule based detector as in [33].

However, ST models are more efficient for handlmgltiple instances of the same
pattern. If a pattern is observed more than onak each instance is yet incomplete, a state
machine has to accommodate extra states for eatanoe of the pattern to trace them in
parallel. In contrast, a ST model represents aowgrd event pattern as one token residing in the
corresponding place that allows for processing oftiple pattern instances with low overhead.
Moreover, in the CPN, the necessary attributesqmate as token fields that allow for relating
system calls by process and thread ID. This mak@®ssible to recognize an inter-process
activity. Consequently, ST signatures are execatabthe event domain. With ST the detection
becomes the execution, and it should be faster #igmature-event matching. Based on the
above arguments, we believe that state-transitipaciScations are more preferable to
declarative languages with respect to scalabitity efficiency.

Our AD specification can be directly converted teeaognition mechanism configuration,
i.e. high level CPN. As a result, in our case, rdeognition mechanism (CPN) incorporates the
signature in its execution semantics ensuring l@tection overhead. In other words, the
detection becomes the direct execution of a CPMN¢cdeno cross-matching for signature vs.
event has to be performed
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4.1.3 System Call Domain Specifications

The system calls present a perfect domain for heha\vbased misuse detection because
system calls are executed in a safe Kernel modenasrdtoring them is much more resilient
against user mode malware.

Publications [36], [37], [38], and [39] proposedirsg sequences of system calls to reveal
misuse in OS object manipulations that are indreatof malicious activity. These methods
discard the semantic relationships between objectipalations. A few attempts to deduce this
semantic information on the level of primitive faiomal blocks [36], [37] failed to define a
complete picture of the process behavior. PC ToblgatFire antivirus [38] allows the user to
specify rules that describe only individual operasi on objects such as process, file, etc.,
facilitating the detection of primitive and obviomssuse such as system file access, or starting a
particular executive object. In contrast, our appto allows for the recognition of complex
functionalities (such as self-mailing) that invoimerrelated sessions of object operations.

Publications such as [40], [41], [3], and [42] ®wirgdynamic behavior analysis. The
methodology presented in [42] describes the deteatf virus activity through tracing system
call events with an emphasis on the order of eventtsout functional context. In contrast, our
approach allows for specifying both patterns ofeirdlated manipulations and primitive
functionalities. The Dynamic Code Analyzer (DCApapach allows for constructing a so called
“gene of self-replication” from primitive object emtions and activity blocks, but it lacks an
efficient recognition mechanism [3].

Authors in [41] utilize behavior graphs that is fiact an extension of the malware
specification graphs presented in [40]. Our worldiiferent/advantageous over [40] and [41].
First, in [40], specification matching is performéislough static analysis and implies mapping to
some sort of a call flow graph of the tested exaaless. Obviously, such behavior graphs do not
address execution semantics, and could not beedilas a run-time recognition mechanism. In
order to recognize the specified behavior in [4hg authors mention the use of a behavior
matching algorithm, unfortunately they do not folima the algorithm itself. In particular, it is
unclear how they might handle multiple system chhkins. In contrast, as mentioned above, a
CPN effectively handles multiple chains due to tme of token dynamics. Second, the
specification in [41] can define alternative reatimns, but their behavior graphs are constrained
to a single process. In contrast, our AD allows dorrelating operations invoked by different
processes, thus we can specify malicious interge®cand inter-host activity. Finally, the
authors in [41] did not analyze and address pasdibhavioral obfuscations. At the same time
they did not propose a solid behavior formalisrmdeeit not feasible to automatically process a
specification. In [41] an expert is responsible fpeneralization of the specifications, for
instance, to avoid handle duplication that coulghgicantly complicate the design process. In
contrast, we formalized functionality in the objegeration domain. This formalization allows
for the automatic processing of AD specificationsatidress possible behavioral obfuscations.
We understand that we addressed a rather limitedfsabfuscations, but given the flexibility
and fidelity of our functionality formalization, deloping new generalization algorithms for
anti-obfuscation should be feasible for an expert.
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4.2 Functionality Definition and Specification

4.2.1 Formalization of the Specification

Before formalizing functionality specification, leis inspect functionality from the OS
perspective as presented below. The MS Windows 108des system recourses and services to
processes through executive objects maintainedhenWindows Kernel. In order to access a
particular resource or service, a process createsrasponding object such as a file, process,
thread, memory section, etc [11]. Every object itlm®wn set of operations which are exported
to the user mode processes through system sefgiggem calls). In the user mode, such system
calls are invoked directly or more convenientlyotigh subsystem API functions.

Processes invoke APl functions or system calls trfopm object operations
(manipulations) that complete some semantically distinct actisnsh as writing data to a file
or sending data to a specified IP address. Conatlgueve define individual functionality as a
combination of actions that achieve a certain heyel objective. It is important to understand
the difference between a functionality and behavidre behavior of a process is what the
process does at the particular stage, while thetitumality determines semantic goals of the
process. In other words, behavior simply manifésésrealization of functionality. As a result,
the major limitation of the existing behavior-basgakcifications is that they fail when dealing
with multiple realizations of the same functionalifThis motivated us to develop a novel
specification that is free from this shortcoming.

Note that processes may utilize both user leveleaibj exported by the windows
environment subsystem, such as Socket, Memory Magpgitc., and kernel level objects
exported by the object manager, such as File, Napigel, Memory Section, etc. For user level
objects, we consider subsystem level operationsoréegh by API functions of subsystem
libraries (such as kernel32.dll, ws2_32.dll). Hoeeweach subsystem level object is based on a
kernel level executive object.

Table 2 features a simple functionality, “Remoteel8h This functionality creates a
backdoor allowing an attacker to remotely execystesn commands. Remote Shell has at least
two possible realizations: Bind Shell and ReverkellSBoth realizations create the “cmd.exe”
process with input and output buffetsS¢dInput sStdOutpytbeing set to a connected port. The
difference between these realizations is that tind Bhell accepts a connection via named pipes
and Reverse Shell connects to the attacker via esackBoth realizations invoke the
CreateProces#&\PI with specific flags that allow for using sotk®pe handle as an input/output.
Ultimately, this makes the command interpreteehsto incoming commands and execute them.

" Here, we use terms “Operation” and “Manipulatiémierchangeably, because both of the terms are eitedsively in the
literature.
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Table 2. “Remote Shell” Realization

Bind Shell realization

Reverse shell realization

1. h_I n=Creat eNamedPi pe(
dwOpenMode PIPE_ACCESS_INBOUND

SecurityAttributes.blnheritHan i RUE);

2. h_Qut =Cr eat eNanmedPi pe(
dwOpenMode PIPE_ACCESS_OUTBOUND

SecurityAttributes.blnheritHandHd RUE);

Connect NanedPi pe( h_I n);

Connect NanedPi pe( h_CQut);

Cr eat ePr ocess(“cmd.exe”,
bInheritHandless TRUE

STARTUPINFQiwFlags= STARTF_USESTDHAND,
STARTUPINFhStdinput h_In,
STARTUPINFhStdOutput h_Out);

aprw

1. s=socket ();
2. connect (s,
sockaddr . s_addr =Attacker_IP

sockaddr . si n_port =Attecker_port);
3. Creat eProcess(“‘cmd.exe”,
binheritHandless TRUE

STARTUPINFQIwFlags= STARTF_USESTDHAND
STARTUPINFhStdInput s,
STARTUPINFChStdOutput s);
STARTUPINFO\StdOutput hSock);

simplify

Consider requirements for specifying functionalBased on the above example, [40], and

[41] we formulate the following requirements foetfunctional specifications:
1. The specification must define the control flow for object operations. It must support

conditional branching and concurrent executid@@onditional branching allows for
specifying alternative realizations that may uélidifferent objects and operations;
however, they achieve the same goal determiningfihetionality. For instance, two
realizations in Table 2 utilize two different objgc “Named Pipe” and “Socket”.
Concurrent executioallows for specifying independent object manipalatsessions, that
could be executed in any order. However, the semp@i dependent operations must
remain intact within the session. For instancehi@ Bind Shell realization (Table 2, left
side), there are two independent operation sessioeste inbound pipe and get it
connected (APIs 1 and 3) and create outbound pipegat it connected (APIs 2 and 4).
Since these two sessions are independent, the #Rlidbns (1, 2 and 3, 4) could be
invoked in any order, as long as API 3 follows ARdnd API 4 follows API 2.

The specification must define data/information flow among object operations. This
requirement allows for specifying how output atitds of operations become the inputs of
consequent manipulations. An attribute data floweeines the discriminatory power of
the specification. For instance, with “Remote Shalhctionality, we have to show that

“Process” object IS created

with STARTUPINFOhStdInput and

STARTUPINFOhStdOutPuti.e. attributes set to the socket handle. We shpaidt out that
data may be passed by value (data flow) or by mé&dion (information flow) [43].
Information flow between source and destinationikattes indicates that the value of the
destination is a transformation of the value of soairce. In addition to the above two
requirements, we introduce a third one that oveesoertain limitations in [41] that are

related to multi-processes activity.

The specification shall not be constrained to the context of one process. This allows for
specifying and relating operations of differentgasses. In fact, this allows for specifying

inter-process functionalities.

The specification must offer enough expressive pame convenient graphical notation to

its design.
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diagrams/machines, simple flowcharts, and workfthiagrams. However, a state machine is a
uniprocess model that does not meet Requiremend 8annot directly express data flows as per
Requirement 2. Flowcharts do not support concuregatution and do not meet Requirement 1.
However, a workflow diagram such as a UML Activilyagram (AD) can generally meet the
above requirements. Consider the formalizationnoAB in terms of an OS object operation for
the purpose of functionality representation.

A basic UML AD is a semantically weighted directp@ph:

G= (Nodes, Arcs, Guards) 1)
where Nodes =State Bseudo

The setState contains state nodes that represent executedti@stivit also contains
Initial and Final nodes that represent the beginning and end opitheess. The sdseudo
comprises pseudo state nodes that control the #aectlow. Pseudo state nodes include
decision/merge (for conditional flow branching)dafiork/join (for concurrent flow execution).
The setGuards contains guard expressions (for conditional bramghthat represent the
semantic weight of the corresponding edges.

Consider the “Remote Shell” functionality in Tal?e Figure 6 depicts an AD of the
functionality in the graphical (left side) and aytadal (right side) forms. According to UML 2.x
standards, the graphical notation displays dedisierge nodes (a, d) as diamonds, and fork/join
nodes (b, c) as bars. We also assigned a sequendtal to each node for explanatory purposes.
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Figure 6. Activity Diagram of the “Remote Shell” Functionality
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The AD contains seven state nodes and four pseatld-sodes. The state node set
includes four created object instances (Nodes %, 3) and three operations (Nodes 2, 4, 6) on
these objects. The pseudo-state nodes determinmicthow of the functionality. The decision
node “a” starts two alternative realizations of fi@ctionality. The left branch (Nodes 1-2)
represents the first step of the Reverse Shellzegadn, while the right branch (Nodes 3-6)
represents the first step of the Bind Shell reéibra Node 7 is the common step for both
realizations. Note that the first step of the BiBthell realization (Nodes 3-6) has two
independent sessions (Nodes 3-4 and 5-6).

This graphical notation is convenient for an expiegigning a specification. However, the
analytical representation is crucial for automatiocessing of the specification. The analytical
form of “Remote Shell” functionality shown in Figu6 (right side) is very consistent with the
UML AD formalism (1). The only modification we madeas the inclusion of th&ars
component that represents a set of local variablegt we provide a generic explanation of all
of the components of our formalism (the detaileanfalism of the AD specification is given in
Appendix A).

The functionality specification is defined as an Alple:

F=(Nodes,Arcs,Assign,Vay @
where

Nodes is a multi-set defined in line 2 (Figure 2). Itnsists ofState andPseudo
nodes. As defined in line 3, there are two typesSti#dte nodesinstances and
Manipulations . Eachinstancenode represents an object created and operated on
the context of the functionality, and its attribsiteine 7 shows the set of Instance nodes
for the “Remote Shell” functionality. The set indks four nodes corresponding to the
following objects: socket (Node 1), two named pifdsdes 3 and 5) and the process
(Node 7)® Line 7 indicates that each object is defined wité attributes used in the
corresponding API that is creating the object. ERtanipulation node represents an
object manipulation with its appropriate parametkense 8 shows the Manipulations set
for “Remote Shell”. This set includes three mangpioins: a connect socket (Node 2),
and two connect named pipes (Nodes 4 and 6).

Ar cs is a set of directed arcs connecting the AD nodesdefined in line 4, the arcs
could be either of two types: Handle flow and Cohtflow. Handle flow arcs
correspond to the execution flow with handle intaerte. A handle arc indicates that
the destination operation (node) utilizes the safnject handle as a source operation
and is executed right after the source. In otherdg/othe handle arc passes the handle
of the source node to the destination node. Fdemee in Figure 6, the arc between
Nodes 1 and 2 is a handle arc. It passes the hahttle socket created in Node 1 to the
connect operation in Node 2 (this indicates thatdicket from Node 1 is operated on at
Node 2). To distinguish the handle arcs from cdrdaros, we display the handle arcs
beginning with rectangle.

Control Flow arcs define the control flow withowrdle inheritance. An arc from this
set indicates the execution order and does notyirapy data binding (via handle or
attribute). For instance, the arc between Nodeditti Node 7 is a control arc that does
not transfer any handles, simply showing that Nod#ould be executed right after the

8 In the brackets, we show the node index as predentthe graphical form.
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two sessions (Nodes 1-2 and Nodes 3-6). In orddraiesfer data between nodes,
variables are used. For instance, pipes or soc&etlles are transferred to Node 7
through variables V1, V2.

Assi gn is a function that binds variable assignment exgoes to corresponding
arcs. Line 11 shows the definition of such a fumctiThe function indicates that
variable V1 is assigned with a handle that waszetil in Node 2 or Node 3.

Vars is a set of local variables that are used to dedist@ flow. Utilization of local
variables with an assignment expression allowssfmecifying a data flow between
object operations (the second specification requerg). To specify an information
flow, an expert should use transformation notafignas depicted in Appendix A. Note
that it is possible to define informational depamde explicitly as well as implicitly.
Explicit information flow implies specifying a forah mapping between source and
destination. Implicit flow does not specify any rpam and simply states that the
destination value should at least partially depemd¢he source value.

To address the third specification requirement estatenode is assigned a unique index
of the process that performs the manipulation preed by the node. Note that in Figure 6,
“Remote Shell” is defined as an intra-process fiometlity, hence, all the operations are invoked
by the same process, and evBtgitenode of the AD has the same process index whith(see
line 2).

From Figure 6, one can see that the graphicakesentation of an AD is much more
revealing than the analytical representation; hamevoth representations are formally identical.
In the rest of the paper, the graphical represemtatill be used for explanatory purposes, while
the analytical representation will be used in djeEation processing algorithms.

4.2.2 Specification Abstraction

The detection success of our system highly depemmishow comprehensive the
specification is. If an expert misses a functidyalealization, the system will be prone to false
negatives and miss an attack vector. Each spegfiicenust be as generic as possible. It should
abstract certain implementation details enablingeets to concentrate only on conceptual
realizations. This is accomplished by the introductof so-called functional objects that
represent some complex but rather standard OSidwmadities/mechanisms such as Inter-Process
Communication (IPC), File Download, etc. Note: adtional object abstracts several alternative
realizations of the particular OS functionality bgcapsulating the necessary Windows objects
utilized in these realizations. Each functionalembjhas a set of operations representing certain
high-level activities. When specifying an AD, exgsemay create and manipulate functional
objects like ordinary Windows objects. Table 3 shdhe set of functional objects facilitating
data transfer. This set is just an example andars ffom being complete, however, it
demonstrates the expressiveness of our approaafelydhe ability of operating on abstract
objects by other objects. For brevity, we discudy a few functional objects.

Table 3. Functional Objects for Data Transfer

Functional object name Based on objects | Operations | Attributes (input => output)
GenericFile File, Create FileName
File Mapping Read BufferLength => Buffer
Write FileName, Buffer
RemotelPC Socket, Pipe Create EndPoint (server, client), ID => Type, Handle
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MailSlot Wait Type, Handle
Recv Type, Handle => Buffer
Send Buffer, Type, Handle => Buffer
LocallPC GereicFile, Create EndPoint (server, client), ID => Type
FileMapping Recv =>Buffer
RemotelPC Send Buffer
o Create FileName, RemoteHost => Type, FileHandle, IPCHandle
FileTransfer GenericFile Send (Type, FieHandle, IPCHandle)
RemotelPC ’ ’
Recv (Type, FileHandle, IPCHandle)

Object “GenericFile” abstracts file access operatjat encapsulates both the “file” object
and “file mapping” object. Object “RemotelPC” repemts an IPC resource for inter-host data
transfer. It abstracts three alternative IPC meisinagt socket, named pipe and mailslot. The
“RemotelPC” object exports the following operatio@seate , Wait , Recv andSend. The
ADs for these operations are shown in Appendix Bignres B-1, B-2, B-3 and B-4. Some
operations have input and output attributes. Fetaimce, the operation “RemotelPC Create”
requires two input attributes: Endpoint class itkerver or client), and EndPoint ID (host IP
and Port for the socket and a name for the pipédtagi The operation returns two outputs:
EndPoint type (socket, pipe or mailsot) and a handllue of the corresponding object. The
operationWait(h)  waits for an incoming connection to the newly tedalPC endpoint with
handleh.

Note that from the expert's perspective, the wtian of such functional objects is
transparent. For instance, when using RemoteRRGspecification, the expert should not make
any assumptions on how a malware will perform IBX@ugh a socket, pipe or mailslot. Such a
transparency is best exemplified by FileTransfegrapons. Table 2 indicates that FileTransfer
operations are based on sheer functional objeat as GenericFile and RemotelPC. This
demonstrates the generalization power of the pegbepecification formalism. Armed with such
functional objects, an expert can build quite genspecifications yet preserve discriminatory
properties that would leave little room for detentevasion.

4.3 Behavioral Obfuscation

The discriminatory power of a behavior signaturenétionality specification) defined by
an expert could be quite subjective and may exchatee of the realizations of the functionality.
In addition, an attacker may perform some sortasfdvioral obfuscation to evade detection. To
address this issue, we developed a set of algasithiat automatically generalize (augment) the
specification of the functionality. In the resttbie section, we will discuss possible behavioral
obfuscations then we introduce the generalizatlgorahm and show how it addresses various
obfuscation techniques.

4.3.1 Behavior Obfuscation Techniques

By utilizing functional objects, experts may spgciinost of the realizations of the
functionality. Then it would be difficult for an tacker to discover yet another conceptually
different realization utilizing different Windowsbgects. However, to evade detection, an
attacker does not have to implement a completely mealization. He may simply obfuscate a
known realization in such a way that it would brahk specification. We distinguish inter-
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process and intra-process approaches to obfuscateakzation without affecting the
functionality. Inter-process obfuscations utilizeltiple interrelated processes that, at high level,
jointly perform a particular malicious functionglitintra-process obfuscation locally alters a
realization of the functionality while preservirtg behavioral semantics.

First, consider possible inter-process approaaheshavioral obfuscation.

1. Utilization of legitimate third party utilities to perform a r equired activity. A malicious
process may run third party utilities to executeneamportant tasks that may be a part of
the functionality. In this way, the process exestutiee functionality without performing
some key object manipulations involved in the taSkr instance, a file virus usually
searches for executables using the “FindFirstFdetl “FindNextFile” API. Instead, the
virus may utilize the system command interpreteg.(écmd.exe”) to retrieve a list of
executable files in a folder and then access thae @ine by one.

2. Distribution of the functionality among several processes a.k.a. multipartite approach.

A multipartite malware consist of several agentd ferform coordinated activity to achieve
a common goal. Such malware can distribute a neaigcifunctionality among several
processes by injecting its code into active bemgitesses or by creating new ones. Then
the combined activity of these processes will penfoan inter-process malicious
functionality. A real life example of such a malwas a KeyLogger which is described in
the next section. Another example is a File Viruat tconsists of two processes. The first
process opens an executable file and passes ¢hleatildle to the second process. Then the
second process attaches the code from the firsepsoto the opened victim file. Neither
process performs a typical malicious functionalitgtividually: the second process does not
open the victim file and does not inject its codhjle the first process is replicated into the
victim file without performing write or self-accesperations.

Now let us consider intra-process obfuscation aggires.

1. Object relocation and duplication.Since a functionality may be constrained by a paldr
object name (e.g. file name), an attacker may ohathg name of the object before
manipulating it. For instance, an attacker can comname or move a file before
manipulating it. In addition, a malware may dupiecan object handle in the middle of the
manipulation sequence to break system call bindiujglitionally, an attacker may access
objects through symbolic links instead of handles.

2. Non-direct object manipulation. This is achieved by specific, low-level systemHksicuch
as utilization of non-trivial OS resources thaballfor accessing objects either in a non-
trivial way or through a “middleman” object. Forstiance, an attacker can create reparse
points or can access files by their streams. He atsy add an alternative path to a target
file through relinking system calls. Such actistiare performed only through Kernel
objects using system calls.

4.4 Specification Generalization, Anti-Obfuscation

In the system architecture presented in Figuréh®,“Specification Generalizer” module
addresses the above obfuscation techniques. E#igctthis module attempts to fill the expert’s
experience/attention gap, thus alleviating limga$ related to the human factor. The module
applies a set of generalization algorithms thabatically augment a given AD to make it less
prone to obfuscations. Herein, we propose thewiofig generalization algorithms:
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TraceFiles — Augments the given AD with functionalities tragithe renaming and
relocation of all files involved in the specifioati. This algorithm addresses the third obfuscation
technique.

TraceHandles  — Augments the given AD with functionalities thedde object handle
propagation among processes, which requires trgdkamdle duplication and the IPC used for
handle transfer. This addresses the first threesalation techniques.

TraceProcesses — Augments the given AD with functionalities thatdkaprocess
generation, remote code injection and inter-processdination. This involves detecting several
realizations of code injection including remoteetist based and remote hook based injection.
The upgraded AD would be able to relate object maations performed by multiple processes.
This algorithm mitigates the first and the secohtliscation techniques.

To address the forth obfuscation approach, one doeseed any post-processing of the
AD in the generalization stage. Instead, we canplinextend functional objects with the
necessary semantics that would trace low-levelatdjmvolved in the obfuscation. This results
in the obfuscation being resolved at the stage pefcification, rather than automatic post-
generalization. In particular, we add reparse oianhd file streams to the “GenericFile”
functional object.

While augmenting an AD, each of the generalizatadgorithms incorporates special
functionalities, termed generalization functioriabt that trace certain activity involved in a
particular obfuscation. Table 4 describes the gdization functionalities, whose ADs are given
in Appendix C. Table 4. lists some functionalitiggt maintain certain global variables that
qualify the traced activities, e.g. generated psses, duplicated files or established IPC
channels.

We describe each of the generalization algorithametl on their pseudo-code, where we
utilize severabprimitive functions defined in Appendix D and generalization functidres as
defined in table 4.

Table 4. Generalization Functionalities

Functionality Updated Description
variable
FileRelocation FList Accepts a file name as inpotl aipdates a FList variable which a dictionary

indexed by file names. Each element of FList isisa ¢ontaining names gf
duplicates of the input file indexing the eleme8uch duplicates could be
derived by copying, moving or renaming of the araiinput file or any of its

duplicates.
ProcessGeneratiorn) PList These two functionalities trace process gaimm and inter-process code
Codelnjection injection and constantly update the global varidblést. PList is a list containing

the PID of the descendant (created or being inpgbeocesses (up to a given
generation limit) that originated from the initj@ocess that starts an AD.
HandleDuplication| DupP | Traces handle duplication and constantly updatesgiabal variables: DupP an
DupH DupH.
DupP is a dictionary indexed with the value of the ialithandle produced 3
object creation. Each element of the dictionarg ikst containing PIDs of th
processes possessing duplicate handles derived thenhandle indexing th
element.

DupH is a two dimensional dictionary indexed by valuetled original handle

o

D W=
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and PID. Each element of the dictionary is a Ifdtandles possessed by indexing
PID and derived from the indexing handle. For ins&
DupH[H1][P1]={H2,H3} means that handles H2, and iW&re derived from the
original handle H1 and are possessed by the PEgsoc

LocallPC IPC_P | Traces Local IPC establishment and constantly @sdawo global variable
Establishment IPC_H | IPC_P andIPC_H.

IPC_P is a dictionary indexed by ID of the IPC. Eachnedat of IPC_P is a list
of PIDs of the processes that own endpoint han@tetuding duplicates) of thg
IPC with ID indexing the element. For instance, IP@d1]={PID1,PID2,PID3}
means that IPC, identified by id1, has endpointgivihandles are possessed |by
processes PID1, PID2 and PID3. Note that some iR@dcserve as data share
points, hence they may have multiple endpoints,ifstance a file or a shared
memory.

IPC_H is a two dimensional dictionary indexed by IPC IDbdaPID. Each
element of the dictionary is a list of endpoint di@s (including duplicates) that
are possessed by indexing PID and shared by IPiCI@iindexing the element.
For example, IPC_H[id1][PID1]={h1,h2,h3} means héarlhl,h2,h3 represent
endpoints of the IPC with id1 ID and are posse$sea process with PID1 ID.

Uy

%

TraceFiles pseudo-code is given below (see listing 1). Thgorthm iterates over
operations and instances presented in an AD (ljndflan operation has “file name” as an
argument (line 2), the procedure adds “FileRelatétfunctionality to the AD (line 6). Note: the
function AttList(x) returns a list of attribute names for the inpugrapionx.

While adding a parallel functionality is trivialt iis not obvious where to insert
“FileRelocation” so that file tracing does not iriege with the rest of the original functionality.
Thus, we insert a parallel flow with “FileRelocatian the following way: if the target file name
IS a constant string, i.e. it is independent fratimeo operations of the AD, we start the parallel
flow right after thenitial node; if the file name is a variable, we startheallel flow right after
the node where the variable is assigned for thetiae; finally, we join the “FileRelocation”
parallel flow with the original AD right before theode that is performing the operation on the
target file.

Listing 1. Trace Files Algorithm
Algorithm Tr aceFi | es

Input:AD - An activity diagram specification
Output: Generilized AD

1. foreach OperationJ{ AD.Instance§] AD.Manipulatiohs

2 if (IpFileNamel AttList ( Operatiof) :

3 TargetFileName= GetAttributeValu¢ Operation IpFileNarje

4 if (isvariable( TargetFileNamyg : ~ RelocStartNode GetAssigniibaigetFileNamg

5. else :RelocStartNode AD.initial;

6 AddParaIIeIFunc(t B, FileRelocatiof TargetFileNamg , RelocStartNode Opera@ion

7 SetAttributeVaIueExpressi(ﬁ@peration IpFileName [IpFileName in FList{" TargetFileNasne )]
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In the algorithm, the parallel flow with “FileRelaton” functionality is added by the function
AddParallelFunct(Origin,New,Start,Mergefsee Appendix D). It adds an AD nanfgewto an
AD namedOrigin as a parallel flow that starts right after the @8thrtand joins it to the AD
Origin just before the noddlerge The nodeStartis determined in lines 4 and 5. If the file name
is a variable, the nodstartis defined througlGetAssignNode function (line 4). Function
GetAssignNode(x) returns the node whose output arc has an assigraxeression for variable
X. Line 7 modifies the AD to make it consistent witle AD formalism (2) given in Section 3.

TraceHandles pseudo-code is given below (see listing 2). In tuale, line 1
introduces the “HandleDuplication” functionality agparallel flow to the original functionality.
Lines 2-8 constitute a loop that iterates overaodlject instances of the AD so that for each
instance, a new element DupH dictionary is initialized with the instandelD and Handle
(lines 3, 4). This would allow “HandleDuplicatioftinctionality to trace handle duplicates of the
current object instance. Line 6 iterates over dbggerations performed on the current object
instance. For each object operation, the algoritbdefines thé’ID andHandle expressions so
the operation may utilize any duplicated handl®beging to the original object instance.

Listing 2. Trace Handles Algorithm

Algorithm Tr aceHandl| es

Input: AD - An activity diagram specification

Output: GenerilizedD

1. AddParallelFundt AD, HandleDuplication, AD.initialPAfinal);

2. foreach Objectd AD.Instances

3. SetAssignExpressi(én OutputA@bject) ,"DupHpndle HID={ Handﬂe) "
SetAssignExpressitﬁn OutputA@bject) ,"Dupfandle={ PII}) "
HandleVarName CreateNewVa(r OutputAfc Objegt ,"Hand1):
foreach Operation] GetObjectOperatiofis AmDbjec):

SetNodePIDExpressi¢@peration ,"PID in DupP['HandleVarName }]" ;
SetAttributeVaIueExpressi@@peration Handle ,Mandle in DupH{" HandleVarNamég][ I]’II))

© N o g &

TraceProcesses addresses the first and the second obfuscationoa&thn the first
obfuscation, a malware runs an external utilitypewform some tasks. As a result, the external
utility has to utilize the OS resources the samg as the malware. In other words, malware
simply outsources its operations or functionalit@she utility. We can recognize the outsourced
functionality in the utility’s behavior using oupscifications. Consequently, in the specification
some object manipulation sessions must have a&j@gssigned to the PID of the utility. If the
utility has started, we must record the PID of ditiéty process and assign the PID in the object
operation sessions that it outsources.

From the above perspective, starting a utility terfarm a part of the malicious
functionality represents a multipartite approaclenee, the first and the second obfuscation
techniques should be addressed similarly: by teattie functionality distribution among several
processes. This requires tracking processes gedebgt the malware as well as processes to
which malware injected its code (infected). Thena#tebute object operations to the generated
processes and infected processes.

TraceProcesses algorithm introduces “ProcessGeneration”, “Codelnjection” and
“LocallPCEstablishment” to the input AD. It alsatnoduces the IPC required for coordinating
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multipartite agents and/or communicating with thiéity. To reduce the false positive rate we
additionally trace data transmission between psE®$hat represent technical yet vital activity.
For instance, a process retrieves (reads) dataghran object that represents data source, and
then this data or its informational dependencyramdferred (written) through another object,
called a data sink (see Table 5). Distributing #fivity in such a way that one process would
access a source object and another process wockdsaa sink object requires using the IPC
responsible for data transmission from the souroeqgss to the sink process. Such distributed
functionality in fact implements an inter-procesgormation link between source and sink
objects (recourses).

For the sake of clarity, in table 5 we present @&fional objects and their corresponding
operations that could be used for data source enkd Note that some objects share the same
source/sink operations.

Table 5. Source and Sink Operations

Objects Source Sink Based on API
operation | Operation | Source operation Sink Operation
File, Pipe, MailSlot Read Write ReadFile.kernel32, WriteFile.kernel32
Socket Recv Send recv.ws2_32 send.ws2_32
Registry ReadValue| WriteValue RegGetValue.AdvamB2 RegSetValueEx.Advapi32.dll
RemotelPC, LocallPG Recv Send

Below we give pseudo-code foraceProcesses algorithm (see listing 3). Initially the
algorithm  introduces three functionalities (lines -4)2 LocallPCEstablishement,
ProcessGeneration and Codelnjection (see TablEhn)functionalities are incorporated through
AddParallelFunct function that adds a functionatilythe AD as a parallel flow to the entire
original activity. In line 5, the algorithm iteratever all objects of the input AD and changes
their PID assign label to “PID in PList”. This meathat a PID must belong to the global list
PList that contains PIDs of the children procestss/ed from the original malicious process or
its children (see Table 4).

Lines 6-20 constitute the main loop that locatesra®sink operations (Table 5) and
introduces the data transmission functionality leetvsource and sink processes. Line 6 iterates
the overall operations of the AD. If an operatisraisink (line 7), then the algorithm obtains a
writable buffer/pBuffer attribute value. If thébBuffer attribute value is a variable (checked in
line 9), the algorithm obtains the node that assifpe variable (line 10). Such an assigning node
is viewed as a data source and data is transféoréte sink operation through ti&nkBuffer
variable. Next, the algorithm introduces IPC betmveesource process and a sink process. To
achieve this, the algorithm adsisndandrecv operations as a parallel flow (lines 10-14) betwee
the node assigning the variable (source node) hadctirrent operation writing the assigned
variable (sink node). Lines 15-20 set PID andlaite expressions of the newly introducedv
node and the current sink operation node, so ligatvwwo operations belong to the same process.
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Listing 3. Trace Processes Algorithm
Algorithm Tr acePr ocesses

Input:AD - An activity diagram specification
Output: GenerilizedD

1. Sinks={ Write, Send, WriteValjie

2. AddParallelFundt AD, LocallPEstablishment, AD.initial, AD.fingl ;

3. AddParallelFundt AD, ProcessGeneratdnigPID ), AD.inifd.final);

4. AddParallelFundt AD, CodelnjectidFifisPID ), AD.initial, Afinal);

5. foreach Objectd] AD.Objects  SetNoePIDExpressio(Object ,PID in PLis}" ;

6. foreach Oper(J AD.Operations

7. if Oper Sinks

8. SinkBuffer=_ GetAttributeValife Oper bBuffer

9. if isVariabld SinkBuffe):

10. BuffAssingNode GetAssignNode SinkBuffr;

11. AssignPIDVarName= CreateNewVaf OutputA(cBuffAssingNojle " PIIY ;

12. NewSendNode AddParaIIeINod(e AD,Ser@{i PID,AssignPIDVarNgnfe, pBufferkBiJﬂer}) BuffAssingNode ,Op)el
13. IPCIDVarName= CreateNewVdr OutputAfcNewSendNoge," ]

14, NewRecvNode AddNextNodé AD,Re cy), NewSendNpde

15. SetNodePIDExpressi(shIewRechode ,'PID in IPC_P[" IPCIDVarName )] ;

16. SetAttributeVaIueExpressi(JhIewRechode Handle,"Handlein IPC_H[" IPCIDVarName "|[ F’P
17. RecvBuffervarName CreateNewVdr OutputAfc NewRecvNpde" pBuifer

18. RecvPIDVarName CreateNeWVz(r OutputA(c NewRech()de," P)D;

19. SetNodePIDExpressi¢@per PID= :+'RecvPIDVarNanje ;

20. SetAttributeValueExpasionOper , pBuffer," pBuffe= % RecvBufferVarNajne

To demonstrate our generalization algorithms, vegetethem with a simple functionality
that uploads a file through the IPC. We utilizedsyél Paradigm for UML software [44] to
design the “File Upload” functionality, see Figui® Then we ran the prototype of a
Specification Generalizer module (Figure 5) thabmatically generalized the functionality AD
using all three algorithms. Figure 8 shows the Alhe augmented (generalized) functionality.
Note that Visual Paradigm designer, with minor nemlignments, automatically produced both
AD layouts of Figures 7 and 8. It can be seen iaiur prototype, the entire process of AD
generalization is completely automated includingnpater aided AD design, automatic
generalization, and finally visualization of thesuéant AD.
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{S = "FileName'}

1 b

<=GenericFile>>
GenericFile
FileName = "S"}

<<RemolelPC>>
RemotelPC
{EndPoint = "Client"}
ID = "[Host_Addr, PortlD:

<=<RemoielPC>>
RemotelPC

{Endpoint = "Server"}

{ID ="PortiD"

{F = "Handle"}

{H = "Handle"} 5

Read L
{Handle = "F"} \<>

{B = "Buffer"}

Send

{Handle = "H"}
{Buffer = "B"}

Figure 7. File Upload AD

As per the example in Figure 7, one can see thé& “Bpload” AD that has two
independent sessions such as IPC establishmene$N®®) and reading a file (Nodes 1, 2).
After establishing an IPC, a buffer is receivedtiyh the IPC and written to the opened file.
Node 6 represents some additional activity noteel#o data variables of the functionality. Node
7 sends the buffer with the file content via theaklkshed IPC. Note that in this AD, we utilized
only functional objects and manipulations, henceecmg most of the realizations of the “File
Upload” functionality.

In the generalized AD (Figure 8), it could be se#mt HandleDuplication,
ProcessGeneration and IPCEstablishment functieeslitare introduced in the original
functionality as independent sessions. Since theenaf the uploaded file is the input parameter,
the Specification Generalization has introducedeRelocation” functionality right before the
file open operation (Node 2). In Nodes 4 and 6bgldhandle dictionaries (DupH, DupP) are
initiated with IPC object handle. HandleDuplicatidode 13) traces handle duplication and
updates the dictionaries. Node 6 accepts a commettdi the IPC server endpoint. One can see
that in the process of generalization, ThaceHandles  algorithm has modified attributes of
several operations: in Nodes 3 and 6, PID the assgt was set to “PlDn DupP[H1]”
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expression which means that the PID of the operatiast belong to the set of PID’s that posses
the original handle H1.

{5 ="FileName"}

ProcessGeneration
{PList = "ThisPID"}
{I = "GenLimit"}

FileRelocation
{FileName = "S"}

RemotelPC
{EndPoint = "Client"}
{PID ="PID in PList"}

{ID = "[Host_Addr, PortiD]"}

{H = "Handle"}
{DupH = "DupH[Handle][PID}{Handle}'} 5

{DupP = "DupH[Handle]{PID}"} RemaotelPC
2 {EndPoint = "Server"}
= - {PID ="PID in PList"}
: enericFile {ID = "PortiD"}

FlleName = "FileName in FLISES]"}

{PID = "PID in PList"} {H = "Harjdle"}
{DupH = "DupH[HandIp][PID]={Handle}"}
{F=Handle"} {DupP = "DupH[Handle]=(PID}"} 12
{DupH = "DupH[HandIel[PID}={Handle}"} 5 e R

{DupP = "DugfH[Handle]={P1D}"}

Wait
{Handle = "DupH[H][PID]'}
{PID ="PID in DupP[H]"}

3

Read
{Handle = "DupH[F][PID]"}
{PID ="PID in DupP[F]"}

B = "Buffer?}

e

13
HandleDuplication

Send
{PID ="PID_0"}
{Buffer = "B}

{ID_0 ="ID"}
9

UnKnown

Recv
{PID ="PID in
IPC_P[ID_0]"}

{Buffer_0= "Buffer"}
{PID_1="PID"}

Send
{Handle = "DupH[H][PID]"}
{PID = "PID=PID_17}
{Buffer = "Buffer=Buffer_0"}

Figure 8. Generalized File Upload AD

The TraceProcesses algorithm introduced an IPC in Nodes 12, 7 anda&8 tlansfers
a buffer from the source process (reading the obrié the file to be uploaded) to the sink
process (sending the buffer to a remote host). €anesee that IPC nodes are introduced as an
independent session from the other activity (Node 9

Figure 8 indicates that the generalized AD is stmadly more complex than the original
AD (Figure 7). However, with respect to the numbérstate nodes it is comparable to the
original. At the same time, the generalized AD addes all three obfuscations presented above.
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This shows that the proposed anti-obfuscation gdization results in an acceptable complexity

penalty.
a *

c
1 l 2 l
. RemotelPC . RemotelPC
PID in EndPoint=Client PID m EndPoint=Server
PList\ jp={Host_Addr,portin]/ | P15t ID=[PortiD]
H1:=Handle H1:=Handle
¥
PID in Wiait 5
DupP[H1] Handle in
DupH[H1][PID] Handle
Duplication
d
- ) Flist[“cmd.exe”] =
“%SYSTEMPATH%\cmd.exe”
4 Y 7
FileRelocation Process
Generation
PList=ThisPID
L=GenLimit

c Y
Process
pszimageName in Flist[“cmd.exe”]
binheritHandles = TRUE
STARTUPINFO.dwFlags =
STARTF_USESTDHANDLES
STARTUPINFO.hStdInput in bupH[H1][PID][0]
STARTUPINFO.hStdOutput in bupH[H1][PID][1]

PID in
DupP[H1]

®

Figure 9. Generalized AD for Remote Shell

Furthermore, we applied the above algorithms tcegdize the AD presented in Figure 6.
The generalized AD is shown in Figure 9. One canthat fork node “b” starts two sessions.
The left session (nhodes 1-3) corresponds to tlsé steps of “Reverse Shell” and “Bind Shell”
realizations. The right session is represented ri@y aperation (Node 4), “FileRelocation” that
traces “%osystempath%)\cmd.exe” file and outputstaoli files that descended from it.

The “Remote Shell” realization is started in Nodetlcreates a RemotelPC object as a
client that connects to the attacker host. The dBimell” realization creates a RemotelPC server
in Node 2. The RemotelPC object handle is tracetHandleDuplication” functionality (Node
6). Node 3 corresponds to accepting a connectitimtive IPC endpoint. Nodes 1, 2 and 3 have a
PID index. Note that the PID index is a part of &ie formalism presented in Section 3. The
expression “PID in PList” means that the PID of fm@cess performing the operation must
belong to the PList. Nodes 1, 2 and 3 represenirtteg-process part of the “Remote Shell”
functionality. Such an inter-process part, alonghvilode 7, address obfuscation techniques 2
and 3. Indeed, nodes 1, 2 and 3 outsource the i€dfian to other processes.
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The final step of the “Remote Shell” is to run “crexk”. Node 5 creates a process whose
image belongs to the list of files that originatedm “cmd.exe”. Note that this FList was
produced by the “FileRelocation” operation (Node Mloreover, the process is created with
standard input set to the duplicate/original hamdlde IPC endpoint, server or client.

Let us compare the generalized AD of the “RemotelSfunctionality (Figure 5) with the
original AD (Figure 2). The generic specificatioefides six different realizations from the two
original ADs. All generic realizations are effe@iagainst the obfuscation techniques presented
above. In spite of generalization, the structuraimplexity of the generalized AD is
commensurable with the complexity of the originaD.Aln fact, the overhead imposed by
generalization is managed via algorithm parameteos.instance, generation of the threshold
parameter inTraceProcesses, to some degree, determines the overhead of théngrac
functionality. This demonstrates the effectiverasg flexibility of our approach.

Understandably, the more obfuscation techniquesaderess, the more complex the
generalized specification is expected to be, howete specification is not yet a complete
recognition mechanism since it merely represents the functionality is implemented in terms
of object manipulations. Hence, the efficiency & trecognition mechanism ultimately
determines how many obfuscations we can addresgrigp®sed a highly efficient way to detect
the specified functionalities. The proposed rectigmi model is scalable enough to detect
specifications with all currently known obfuscatson

4.5 Functionality Recognition

As indicated in the system architecture (Figurethg, functionality recognition process
consists of two stages. In the first stage, we gez® individual object manipulations by
identifying their dedicated APIs in the system addimain. However, a manipulation may be
performed through several alternative APIs opegatin the same Kernel objects. Additionally,
an API function may invoke several additional mirsystem calls that are not critical to the
manipulation implementation. Hence, only the esagnsemantically critical part of an API
function should be recognized and attributed tocthreesponding manipulation. This recognition
approach is resistant to certain evasion technigunes the malware does not invoke the entire
API but only its critical system calls, thus onlarpally realizing the API yet achieving the
required manipulation.

In the second stage, we recognize functionalitiesough the identified object
manipulations, i.e., APIs. Note that system calepresent APIs, and APIs represent
functionalities in that are consistent with the AP). Hence, the same type of models can be
employed to recognize subsystem object manipulstiand malicious functionalities. The
selection of a particular recognition model mustjb&tified with respect to both expressive
power and implementation efficiency (computaticeradl memory complexity).

4.5.1 Justification of the Recognition Model with Respecto Expressive Power.

Consider the following simple functionality thatutd be a part of a virus: “open all
executables in a folder; do not access files wotthe predetermined point in time; then check to
see if all of them are ready for code injectiorenthf all the files are ready, inject the code,
otherwise close all of the opened files”. One mion of this functionality could utilize the
CreateFile, ReadFile (to read the PE header) anileMile API (to inject code). Since this
functionality requires the synchronization of fieading and file writing, then the sequence of
the APIs invoked by the functionality would repnesthe following pattern:
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CreateFile, CreateFile, ... CreateFile, ReadFiendFile, ... ReadFile, WritdEj WriteFile, ... WriteFile

n times n times n times (3)

This pattern constitutes a formal language:

L={CreateFiIé ,ReadFile , WriteFilei [ *}Z )

According to Pumping lemma, this language is nottext-free [45], but it can be
generated by a context-sensitive grammar. We heltbat a context-sensitive grammar can
express all functionalities presented in AD forrms@ali(2). Object parameters and handle values
could be represented by a large non-terminal akthedvering the entire parameter space (i.e.
all possible values of the parameter’s type). Headeinctionality can be at least recognized by
Linear Bounded Automata (LBA) that is an accepberaf context-sensitive language [45].

4.5.2 Justification of the Recognition Model with Respecto Computational
Complexity.

According to [46], a LBA of size n can be simulatada Place Transition Net (PT-net) of
size o(nz). The LBA and equivalent PT-net would have idertitae complexity for an

acceptance problem. A PT-net can be translatedantequivalent CPN in such a way that the
structural complexity of the PT-net (number of gislcwould be converted into the inscriptional

complexity of the CPN (arc expressions). Since & @®uld have far fewer places, we prefer

using the CPN rather than a PT-net. Moreover, a @RSl an advantage over a LBA when

processing multiple instances of the operationrch@iords): should a chain be executed more
than once, an LBA model accommodates extra statesath instance of the chain. In contrast, a
CPN represents an executed operation chain aokee tesiding in the corresponding place that
allows for processing of multiple chain instancethviow overhead. Consequently, a CPN was
chosen as a recognition model.

A CPN could formally be defined as a tuple [47]:

CPN=(S,P,T,AN,C,G,E, 4)

where: S — color set,P — set of placesT — set of transitionsA — set of arcs , N —
node function, C — color function, G — guard fuanti E — arc expression function, | —
initialization function.

Next, we formulate a CPN configuration that progidexecution semantics for the AD
specification defined in (2). To recognize the fimmalities specified in an AD, a CPN
configuration must reflect the objects and manitpoes. Additionally, we need to recognize
several distinct functionalities that may or mayt t@ve common implementation patterns.
Hence, CPN places must represent the followingestaireated objects, object manipulations,
pseudo states routing the control flow of ADs, amdividual functionalities.

The above considerations indicate thatsbeof place®f the CPN should consist of four
disjoint sets:

P=p, 0 P,

manip

uer

fun

u Fp))seud (5)

These disjoint sets determine the following foyrey of places:
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Object place (R, ) is associated with a unique OS object. In thiz@] a token represents

an instance of the object associated with the pl&eh a token is defined as a tuple: a
descriptor (handle) of the object instance, anétaok necessary object parameters. Hence, the
color set of Object-places typically constitutepaar of two types: the system handle (unsigned
int32), and the set of attribute types utilizedsystem calls for creating objects such as strings,
int32 (for access flags), pointer, and others.

Manipulation place (P,,,,) represents a particular operation (manipulatmm)n object.

Such a place contains tokens representing the ssfot@xecution of a corresponding operation.
A token comprises a handle of the manipulated o¢lgad critical parameters of the operation
represented by the place. Thus, the color set Mfaaipulation place consists of the space of
system handles and a set of selected operatiomp#ges associated with the place.

Functional place (P,,,) corresponds to a unique functionality. These ggamntain tokens

that represent the successful recognition of angiftenctionality. Note that functionalities
represent not a particular object, but a pattermanipulations on several objects. The color set
of Functional places includes only selected attabwf the necessary objects involved in the
respective functionality as well as the objectsemgiion parameters that individualize the
functionality.

Pseudo place (P,..) Iis associated with the pseudo states of the AD. A

manipulation/object place represents an executgecbloperation. An input transition of an
object place must be attributed to the executioorad of the functionally equivalent APIs or
system calls implementing the respective maniputatAn input transition of a functional place
should be enabled when the corresponding funciiynalexecuted. Hence, the set of transitions
consists of three disjoint sets:

T=Tan O T e T 10 )

where T,_, - manipulation transitions representing systeniscat a subsystem level
operation (exported by APDT - pseudo transitions that are utilized to refl&Ex

pseudo

pseudo

pseudo states; and,,, - functional transitions such that their input amdput places
constitute functionalities or functional object ogiBons.

We should point out that technically, a functiotiensition would coincide with the
appropriate system call in a discrete event s¢édavever, the occurrence of such a transition is
a semantically important event, thus we delibeyadel not associate it with a system call.

Each manipulation transitionT(_,) is enabled upon execution of any of the equivalen

APIs performing the manipulation. Consequently,dbard expressions of such transitions must
be defined over the object descriptor space (haadte buffer address) as well as over the
manipulation parameter space. Guard expressionsirenthat only manipulations with
parameters determined in the corresponding AD weuklble the transitions. The expressions of
the output arcs may include variables of any typenfthe color set which covers the necessary
attributes of the system calls and API functionisTprovides enough flexibility to distinguish
similar, yet semantically different functionalities

We developed procedure “ADtoCPN” that produces & @®m the given functionality
AD (see listing 4). Such a CPN possesses the regesgecution semantics to recognize the
functionality. Here we only outline the high-lexsteps of such a procedure.
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Listing 4. ADToCPN procedure

Procedure ADtoCPN
Input: F — an AD of the functionality defined by th e formalism (1).
Output: CPN — a CP-net that recognizes the given fu nctionality F.
1. Compose the CPN structure (P, T, A) correspondin g to the constructs of
the AD of the functionality. Replace the AD arcs wi th transitions and
replace the nodes with places.
1.1 Form a set of places P and set of transitions T that correspond to the
state and pseudo state nodes of the functionality F .
1.2 Form a set of the CPN arcs (A) connecting the p laces and transitions
created in the previous step (1.1)
1.3 Form a set of functional places, transitions an d corresponding arcs.
2. Define place colors (C), guard expressions (G) a nd arc expressions (E)
that define execution semantics of the functionalit y F in the given domain.
2.1 Define guard expressions of the manipulation tr ansitions that check
the executed manipulation parameters against parame ters specified in the
functionality’s AD.
2.2 Define guard expressions at the transitions tha t represent branching
arcs of the AD decision nodes.
2.3 Define a color function (C) that would reflect variables of the
functionality.
2.4 Define arc expressions representing variable as signment in the
functionality’s AD.
2.5 Induce Color set (S) and the rest of the arc ex pressions from the
color function (C) and the CP-net structure (P,T,A)
3. Compile a CP-net ( CPN=(S,P,T,A,N,C,G,E,) from the component sets obtained
in steps 1 and 2.

Consider low-level CPNs recognizing subsystem dhje&nipulations in the system call
domain. These CPNs are obtained from the systerh leaél ADs specifying object
manipulation. Here, manipulation transitions aral#ed by system call execution and therefore
it is an open network driven by external events (@i). Moreover, manipulation transitions do
not have input arcs representiiget transitions. We also distinguish outlet transitiaimat
represent handle/object elimination. For instartbe, NtClose system call enables an outlet
transition that destroys a token from the corredpunplace.

Using procedure ADtoCPN, we obtained both high &owl level CPNs for “Remote
Shell” functionality (Figure 10).
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GetPar(x,y,z)=(x,B(y, GENERIC_WRITE)*PIPE_ACCESS_OUTBOUND
+B(y, GENERIC_READ)*PIPE_ACCESS_INBOUND, B(z, OBJ_INHERIT))

Figure 10. High Level (Subsystem Level) CPN for theERemote Shell” Functionality

Figure 10 shows the high-level CPN. where placeshaped as ellipses and transitions as
rectangles. The CPN node indices correspond toAfbenodes they recognize. For instance,
transition # 7.1 and place #7.2 will recognize Né&deof the Remote Shell AD. In Figure 10, the
cloud shapes symbolize external CPNs such as ReRGte€€PN, Low level CPN, and others.
These external CPNs recognize the correspondingtitunal/ subsystem manipulations and
enable relevant transitions. For instance, tramsit#1.1 is enabled when functional object
“‘Remote IPC” is created. The transition’s guardiD'ih PIDList”, checks whether the process
performing “Remote IPC” belongs to the list of dasdant processes. This requires tracing a
generated process as specified in the AD in Fi@ur€he process tracing is performed by the
“Process Generation” CPN that provides a descerfliihiist as tokens to transition #7.1. The
Object places are highlighted with bold fonts. Blaé5.2 (“RemoteShé) is a
recognition/functional place that represents aasitl functionality recognition.
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A low-level CPN is shown in Figure 11. It recogrezthe following subsystem level
manipulations: “Create Socket” (socket API), “BindListen” (listen API), “Accept” (accept
API) which are exported by ws2_ 32.dll; and “Creélamed Pipe” (CreateNamedPipe API),
“Connect Pipe” (ConnectNamedPipe API) which arecetqn by kernel32.dll. In parentheses,
we provided an API function that belongs to theugrof equivalent subsystem APIs performing
the associated manipulation. The CPN has three sels (types): handle (H), whose variables
represent object handles; string (S) for the faenes, and uint32 (1) for access flags. Color and
variable declarations are written using CPN mardanguage (CPN ML) syntax [47]. The CPN
has 10 inlet transitions corresponding to systelinegacution. These transitions generate tokens
representing attributes of the system calls trepancessed by the CPN.

Process Generation CPN, Remote IPC CPN, File Relocation CPN,

Duplication CPN —

(ChildrenPIDList,
ParentPID)

7.2

p @nérated
Processes

[ChildrenPIDList, PIDList]

71
Process
Generation

[ParentPID in
PIDList]

(PID,EndPoint
Type,ID,Handle)

PIDList
11 —X
RemotelPC

(OrigHandle,
NewHandle)

[PID in PIDList]
[OrigHandle in hList]

If EndPoint==Cifent Duplication

6.1

If EndPoint==Server
then Nandle

hList
3.1
RemotelPC_Accept

hList

(NewFiles
ParentFile)

ID, [hList, NewHandle])

4.1

established

51X

If (FileName in Flist) &
([StdIn, StdOut] |in hList)

then simple

else empty

Process

[OrigHandle
in hList]

Duplication

(PID,Type,
Handle_In
Handle_Out)

(FileName,

(OrigHandle,
NewHandle)

52—~
RemoteShell

Figure 11. Low Level (system call level) CPN for # “Remote Shell” Functionality

Low level CPN, Remotg IPC CPN, Duplication
CPN

It can be seen that a CPN’s structure is very aintd the structure of the AD. ACPN is a
very efficient recognition mechanism due to tokgmainics. Hence, a CPN causes a minimal
performance penalty for the anti-obfuscation gdimtion we introduced in Section 3. This

ensures that our approach is highly scalable, atigws to address most of the known high-level
obfuscation techniques.
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4.5.3 Dynamic Information Flow Tracing

Depending on the specification, our IDS could empocoarse-grained detector or fine
grained detector. Coarse-grained detectors onlgetraystem call execution discarding
information dependencies. Fine-grained detect@setinformation flows using dynamic data
tracing techniques such as the taint propagati@n 42], thus potentially providing additional
discriminative power. However, it was shown thatghy dynamic techniques cannot trace data
transmitted through covert channels such as imdlmivs [50]. A particular attack on the taint
propagation technique was described in [43] usmpglicit flow techniquethat is hard to defend
against as confirmed in [51]. Since the implicdvil allows transmitting a bit byot executing a
branch conditioned by a tainted value, control flamalysis techniques such as [48, 49] are
useless in this case. Note that the static anatysiseenon executed branch would not help either
because, in general, the branched code could bgpmed. Forced execution of such a branch
may fail if it has implicit jumps depending on teed values.

In general, malware can evade data tracing by uamgmplicit flow that is easy to
implement [43]. However, malware cannot avoid ussygtem calls. Consequently, dynamic
information flow tracing would not decrease falsegatives compared to purely system call
based detection. On the other hand, taint propamgatiay decrease false positives since there is
no reason for legitimate software makers to usextashannels in their codes unless they want
to protect their products against reverse engingeri

The proposed AD formalism (2) allows for specifyifighctionality with informational
dependency between the operation attributes. Réamgiof such a functionality would require
the utilization of the taint propagation engine,[48] coupled with the system call monitor.

4.5.3.1 Taint Propagation Engine

While implementing the tainting engine, we gengrédllowed the methodology given in
[52], [48], [51], and [49] but our implementatiorffdrs in the following aspects:

. Taint source and sink utilization
. Taint dependencies and propagation

4.5.3.1.1 Taint Source and Sink

In our system, the objective of the tainting engeo trace information flow between
object operations. In the AD formalism (2), an mfation flow can be specified through a
variablex that is referred to by the content through a fi@nsationT(x). In this case, the source
of the information flow is the operation whose autmttribute defines the variable. The
destination of the flow is the operation whose inptiribute depends on the content of the
variable. Note that in the case when the variablgasenting the flow is referred to by the
content in several operations/attributes, an inédgrom flow may have multiple destinations.

Functional object operations are based on subsysteerations that in turn are
implemented through APIs and system calls. Heneehrically, information flow tracing is
initiated by tainting the output argument of a eystcall implementing the source operation. At
the same time, the flow is recognized by checkirggtaint of the input arguments of the system
calls realizing the destination operations. To dvaise positives, we utilize a unique taint label
for each particular instance of the specified infation flow.
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4.5.3.1.2 Taint Dependencies and Propagation

As described in [51], our system propagates th# tabel according to three dependency
vectors: explicit data flow, system call and cohti@w.

For the x86 architecture, data flow dependencydbel represented by data transfer and
stack instructions such as MOV, MOVX, PUSH, POER,,alr arithmetic and logical instructions
such as ADD, SUB, AND, OR, etc. In the case of dirata transfer, the engine propagates
tainted bytes of the source to respective bytethefdestination. However, if the source is a
register and it is tainted, the engine marks alkhef destination bytes. Note that the source
operand could be indirect, for instance MOVZX ewsqrd ptr [ecx+eax*2]. In this case, the
engine taints all of the destination bytes if aittiee index or displacement registers of the source
is tainted. Such a policy enables tracing arrayimaations indexed by tainted values.

Control data flow usually takes place when a vadeiab assigned within the scope ibf
else or switch case blocks that are conditioned by the taintatlier To resolve such a
dependency, we tried to follow the methodology48][that implies tainting every destination
within the scope of the conditioned branches. Harelwased on our experience, sometimes one
cannot take into account the entire scope, bedéasy of its branches lead to the return of the
current function, the system taints everything le trest of the function resulting in false
positives. In such a case, we mitigate false faiapagation by pruning such branches from the
flow graph and limiting the depth of the scope.

System call dependency is represented by datagsiogesystem calls/APIs such that they
do not perform any system related activity and ary responsible for generating output data
from the input data. Such data processing systdéisiar@ best exemplified by the RTL functions
RtlIinitAnsiString, and RtlIAnsiStringToUnicodeString For instance,
RtlAnsiStringToUnicodeString(outbuff, inbuff, ...) eates a null terminating UNICODE-string
(outbuf) from an input null-terminated ANSI-stritigbuff). Upon execution of this system call
our engine would respectively taint the Unicoderabters (words) of the output string (buffer)
corresponding to the tainted ANSI characters (§ybéshe input string (buffer). Note, here we
perform a one to one tainting to exclude falsettpmopagation. Some system calls may untaint
the input argument. For instance, if RtIFreeHea ibe invoked, then the input buffer is freed
from the heap causing our system to untaint théecof the buffer.

Unlike [49], in our system, a particular taint labgay become obsolete (retired). When the
information flow is recognized, the taint labeltbe flow retires, meaning that the system will
untaint any object tainted by the retired labellaBel may also become obsolete if the system
identifies that the source system call was executethe frame of a wrong (non-source)
operation. The latter situation may occur if twdfatient operations begin with the same
subsequence that originated in the source systdrarmhathen split. In this case, the operations
only will be recognized at the end of the executifter the source system call. That means that
the engine must start tainting before recognizivegentire operation.

4.5.3.2 Taint Utilization in CPN

While the taint engine is responsible for taint gagation, in order to recognize the
information flow in the operation session the CPa¢dxd recognition engine is responsible for
taint label management. Upon execution of a systali the corresponding enabled transition
creates a token representing the system call.dfsystem call is the source of a specified
information flow, the transition should also sigtia taint engine to create a new taint label and
add the label to the new token as a field. This waytransmit the taint label of this particular
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information flow’s instance. When the destinatioystem call is executed its transition also
checks to see if the taint label of the input tokeequal to the taint label of the system call's
input attribute. If the labels match (meaning tiet instance of the information flow reached its
destination) the CPN recognizes the flow itself dnabling the corresponding transition and
firing a token to the recognition place.

Token dynamics play a critical role for the effivoy of the information flow recognition.
Since the taint label becomes a part of a tokenreéhognition mechanism verifies the taint label
in only two transitions corresponding respectiviethe source system call and the destination
system call. In other transitions where there arénformation flow endpoints, the taint label is
not verified. This separates the tainting engimenfrthe recognition engine, thus achieving the
optimal overhead (complexity) distribution.

4.6 IDS Implementation

4.6.1 AD Designer

According to the architecture presented in Figurarbexpert has to specify and supply
activity diagrams of the functionalities definedterms of the AD formalism (2). UML 2.x AD
syntax provides enough constructs for specifying@mnponents of the functionality formalism
[53]. The state nodes are represented as UML atioamplex functional nodes as UML
activities, and object operation attributes andialde assignments as UML tag values.
Additionally, UML syntax allows for using so-calletereotypes that are convenient for creating
simple node profiles that define the set of taggakies. For each object operation, we use an
individual stereotype that determines a set ofibattes in the form of tagged values. In our
implementation, the choice of the UML AD designernot critical as long as it is strictly
compatible with the UML 2.0 standard. In our expesnts, for UML we used Visual Paradigm,
a commercial software that offers free communitgases [23]. After finalizing the AD design,
the expert exports the AD to the UML XMI, a fornthat is used to exchange diagrams among
UML compatible applications.

4.6.2 Specification Generalizer and CPN Constructor

We utilized the Python language to implement pygies of the Specification Generalizer
and CPN constructor modules. The script for thecBipation Generalizer module constitutes
710 lines of code and implements all three germatiin algorithms and the specific functions
defined in Appendix D. We also developed a functizex imports a formal AD from the input
UML XMl file created by the UML AD designer (VisuBlaradigm). The importing is performed
by interpreting and mapping UML constructs (e.gg tsalues, actions, activities) to
corresponding AD components (e.g. variables, objestances, operations) as defined by
formalism (2).

Prior to execution, the Specification Generalizesdode imports the input functionality
AD along with the generalization functionalitiesDAand the functional operations that were
pre-designed in Visual Paradigm (see Appendicesn® @). Then, the module applies the
generalization algorithms to the input functionabind produces a generalized AD. Finally, the
module exports the generalized AD to the XMl filde resultant XMI file can be imported by
the UML designer for on-demand editing or by theNC&onstructor for producing a CPN
recognition model.
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The CPN Constructor module applies #iBtoCPN procedure to the given functionality
AD to produce the recognition CPNs defined as #et(p). Finally, the Constructor translates
the obtained Petri networks to a CPN ML like forraatl exports it as an XML file for the CPN
recognizer modules.

4.6.3 Functionality Recognizer

We developed two versions of the functionality ggotion modules. The first
implementation was intended to evaluate the sddlaband runtime efficiency of the
methodology. The CPN recognizer was implemente8, 500 lines of native C++ code. Here,
the CPN configuration is mostly hardcoded and itgification usually requires recompilation.
To minimize the complexity of token matching wdiméid self-balancing trees to store tokens in
places. The trees are indexed by correspondingrdlasually handles) utilized in guard
expression of the output transitions. To store iekibat represent file derivatives (copies) of the
original target file we utilized chained hash tahiledexed by file names.

For the sake of efficiency, in this version theteys call monitor operated as a Windows
device driver. We used an SSDT substitution tealmiep the driver to hook Windows system
services [3, 23]. Due to this type of driver, sahlIDS is not completely transparent, however,
the IDS’s activity could be concealed through appydriver hiding techniques and covert
user/kernel communications [23].

The second version is less efficient, but much ngameric. For this version we developed
a highly scalable and generic CPN simulator in RET with Ling extension. The source code
of the most of the CPN simulator components islakbe at http://apimon.codeplex.com. The
program package includes several projects constitat, 900 code lines in total. The projects are
responsible for system/API call hooking, call dgtarsing and transmission, and CPN
simulation. The CPN is built for simulation by tedating arc and guard inscriptions into
generative and filter expressions backed by Lingaib.

For the sake of performance and operability, weothiced some simplifications to the
CPN simulator. The first simplification is that weat the CPN as an open model that is fed with
tokens from external systems such as the systdnmoalitor and the taint propagation engine.
Next, we did not implement binding of variablesdrging to different arc expressions in order
to avoid computationally expensive cross list miawghFinally, we eliminated the possibility of
specifying the number of tokens retrieved by anfiamn a place.

In spite of these simplifications, we preserved tmaisthe CPN execution semantics. In
particular, we treat arcs as token generators araitdg as token binders. Hence, the CPN
simulator is not limited to any particular execuatidomain and can process events of any nature
from multiple sources. For example, the CPN sinmulatan process system/API calls, API
functions, and functional object operations sugpfi®om other CPN simulators. Such diversity
allows us to build and simulate complex, hierarah@PNs with low execution overhead.

4.6.4 Taint Propagation Engine

For the prototype, we did not attempt to achiewe tainting overhead because we were
primarily interested in evaluating the recognitiomlechanism in tracing information flows
specified in the functionality. The taint propagatiengine was implemented using an IDA
debugger with a IDA python debug management scfipé engine runs the traced process in
debug mode and analyzes each instruction and d@san@s. For each library function call, our
system resolves the name of the function and iafitibute. When a function is called, the IDA
debugger breaks with dbg_step_intcevent and passes control over to our script. Tnigts

48



verifies the function entry address and parseattttbutes as well as disassembles the body of
the function.

To determine entry point addresses of the systella oar script verifies whether the
process loaded the native system library (“ntdfldiTo achieve this, every time a library is
loaded, the debugger breaks withg_library loadevent, then our script parses the ntdll.dll
image and records its export functions entry adgresligned to the base address of the loaded
module.

In our system, an expert has to provide system daedlarations that are used as call
dependencies as well as related structure dedasatlhe script parses standard declarations so
that the expert may directly feed the engine wittlarations from the MSDN website.
Moreover, the expert has to provide dependenciesdas input and output attributes of each
particular system call that is a call dependenaychSdependencies are specified in a simple
XML format.

4.7 Conclusions

In this chapter, we addressed present and futomiéations of the current Behavior Based
IDS (BBIDS) associated with signature expressivenéghavioral obfuscation and detection
efficiency. We advocate for the separation of tpectfication and detection domains. We
presented a new approach for formal specificatibthe malicious functionalities based on
activity diagrams defined in an abstract domain. Meoduced so-called abstract functional
objects that along with system objects can be fmedreating generic specifications that cover
multiple functionality realizations while presergiperfect discriminatory power. We developed
and tested an automated procedure, enabling hurperte responsible for the formulation of
malicious behavioral patterns to concentrate orceptual realizations while omitting certain
implementation details.

We analyzed and classified possible behavioral siation techniques, both inter-process
and intra-process, that can compromise existingCEBIl As a mitigating solution, we suggested
the concept of specification generalization thaplies augmenting (generalizing) otherwise
obfuscation prone specification into a more geneslafuscation resilient specification.
Generalization algorithms that make AD immune ®dbfuscations were developed.

We proposed a methodology that uses a CPN to rem@mctionalities at the system call
level. Moreover, we developed an approach for ipo@ting information flows into a CPN to
achieve fine-grained recognition. Finally, we pre@d an automatic procedure for converting a
given AD into a CPN that recognizes the defineccfiamality in the system call domain that was
enriched with information flow data. In the endtbé chapter, we described an implementation
for all of the IDS modules.
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5 EVALUATION OF THE DEVELOPED IDS

5.1 Experimental Setup

An experimental evaluation of the technology ddmaxtiin this document was conducted
on the virtual network testbed at Binghamton Ursitgr[2], [3]. The testbed was configured for
a virtual network comprising dozens of victim hosepresented by virtual machines with
vulnerable versions of the Windows OS and our pyp® IDS. Using the testbed, we
experimented with various types of replication eegias well as malware payloads representing
the following set of potentially malicious functialities:

Replication engines:

. Self code injection — A malware infects an execlatdite through injecting its own code
into the executable body and replacing code erdamytg. It is used by file viruses.

. Self mailing — A malware emails its image as aadchtinent. It is used by e-mail worms

. Executable Download and Execute — Downloads afride the Internet and executes it.
Used as a part of self-propagation engine of n&kwarsrms [2], hence it is exposed by
exploited processes and network bot agents su€hogen-downloaders.

. Remote shell — Described in Section 2. Used agtaopgropagation engine for network
worms; also exposed by network bots.

Malicious payloads:

. Dll/thread injection— Injects DLL/thread to the address space of age® Used for
password stealing or process control highjacking.

. Self manage cmd script create and exeeutemalicious process creates a command script
and executes it by running command interpreter. Thmmand interpreter performs
various operations on the malware image/dlls aifiertermination. This functionality
relocates/deletes the malware image to concefdotgrint. Afterwards, a command script
usually erases itself.

. Remote hook Sets a remote hook into a victim process foadiqular event; used for
keylogging.

. Password stealing Steals credentials and sends them to the InteFhis functionality is
discussed in the next section.

These functionalities were specified, generalizend aranslated to CPN. Since
functionalities share the same object operatiorsiges, to decrease simulation overhead we
eliminated CPN structural redundancy by integrathmg high level CPNs into a single universal
CPN having several functional places recognizingyialen malicious functionalities. The low-
level CPNs were also integrated into a single Peé&twork capable of detecting object
operations involved in the functionalities. The CRbhfigurations were then loaded into the
Recognizer modules of the IDS.

We experimented with the malware known, according¥ descriptions, for perpetrating
at least one of the malicious functionalities imerto verify the detection rate. The selected
malware set included:

. File viruses- 7 instances (W32.Neo, Abigor, Crucio, Savior, ot Halen, HempHoper)
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. Network worms — 10 instances (W32.Welchia.A, Sasser.C, Bozorherio,
HLLW.Raleka.A, Alasrou.A, Kassbot, Shelp.A, Blastérancette)

. E-mail worms- 9 instances (5 variants of w32.Netsky and 4avdisi of w32.Beagle)

. Network bots/Trojans— SpyBot.gen, IRC.SdBot, RxBot families, Win32.Ban
Win32.lespy

We ran each malware image in the corresponding@mwvient allowing it to execute its
payloads and/or replicate properly. The replicadotivity was exposed when victim hosts were
attacked by various worms [2, 13]. The set of vastms included strains that had been modified
to assure their propagation success, as well asodified strains to assure test fidelity. To
invoke the malicious payloads, we executed malwareertain preset conditions, e.g., we
established an ftp/tftp server for the “executaid@nload and execute” functionality. In some
cases, we had to force malware strains to run fegitoads by using debugging and run-time
code modification.

We ran multitude of benign software including websisers, messengers, email clients,
file utilities, network and system utilities andioé tools in order to evaluate the false positive
rate. We ran the tested software under variousitonsg/inputs to expose their functionalities.
We should point out that our experiments did noteccall execution branches of the tested
programs because some of them were missing ceniaior behavior patterns. Nevertheless, we
believe that in our experiments the tested softwaneessfully exposed all of the main activities.

5.2 Detection Results

Tables 6, 7 and 8 capture the main results of gperments. The upper part of Table 6
presents detection results for the legitimate saftwEach cell indicates how many programs
were detected based on the given functionality.

The lower part of table 6 features results for maiis software. For each malware set, we
indicate how many instances possessing the givectiinality were detected. For example, 4/4
means that there were four malware instances axgpase given functionality and all four were
detected by our IDS.

The rest of this section discusses in detail redaltthe false positives and negatives.

5.2.1 False Positives

To assess the false positives, we performed twerarpnts.

In the first experiment, we manually ran a divesseof 210 legitimate programs including
web browsers, e-mail clients, system tools, fileagers, office tools, hooking software, etc. We
did not traverse all functionalities in all of thested software because we were only focusing on
main features of each tested program.

Table 6 indicates that eight programs out of 22 #howed false positives. Indeed, some
known malicious functionalities could be exposed dgytain legitimate software due to the
following reasons.

. Executable Download and Executéhis functionality can be performed by Internet
browsers or file managers, mostly on behalf oféhd-user. In addition, many programs
perform periodic checks for updates, if there is @date available, the program
downloads and automatically executes it. This #gtsan also be tagged as download and
execute.
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DLL/thread injection This can be performed by user/system monitoriofjwgre. In
particular, the Easy Hook library injects a DLLttace API calls performed by an arbitrary
program. The WinSpy program performs a DLL injeatino order to retrieve the window
objects data of a foreign program.

Self manage cmd script create and exectite uninstall hooks, the Easy Hook exiting
functions run acmd script that waits for the hooking process to een removes the
hooked DLLs.

Remote hook-Hooking can be performed by chat programs to itiffewhether a user is
idle. These programs hook into other processeth®omput events such as a keystroke or
mouse message.

Self-mailing.When a user opens the “Save/Open file” dialog wmdmany programs
show every file found in the directory by the prom®n in the dialog window. In this case
if a user browsed to the programs image locatiadhéndialog window right before sending
an e-mail with attachment, the e-mail clients mhgve up as a false positive. However,
such behavior coupled with the sending of emamhgis client image is considered to be
atypical user activity. Since this type of situationly happened in a particular scenario
artificially performed during testing, we did ndtrébute it to a false positive of the entire
e-mail client program.

Table 6 clearly demonstrates the difference in raenatory power of various

functionalities that are frequently exposed by naalv According to Table 6, self-code inject,

self-mailing and remote shell were never exposedoénign software, thus they have near
perfect discriminatory power and can be used folwai@e detection. However, “Executable

Download and Execute” (“ED&E”) that is exposed snign software such as a web browser
has low discriminatory power, hence it cannot bmmemended for signature-based detection.
Regardless of the discriminating power, our expenmdemonstrates the ability to reliably

detect individual functionalities. This ability ddube beneficial for the detection of complex

malicious payloads, such as password stealing, ntiagt involve the combined use of several
interrelated primitive functionalities.

Table 6. Functionalities Detection Rate and FalsedBitive Rate

Self-replication | Replication/ payloads Payloads
Self code Self Exec. Remote | Dll/thread | Self manage cmdRemote
inject mailing | Download| Shell injection |script create &Hook
& Execute execute

Legitimate software

203 [ Windows systen
tools, office appd 1 1
other utilities

2 Web browsers
(Opera, IE)

2 E-mail clients
(Outlook  Expresd 2(?)
Eudora)

1 Instant  messagin
client (Yahod 1 1
messenger)
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2 File managers 1
(FAR,Win Exp)
Total detected 4/210 1/210 1/210 2/210
7 File viruses 717
. 10 l;loe;\;v:rk worm shel 2/ 8/8
% 6 |Network —worm 4/4 11 11 11
s payloads
9 E-mail worms 9/9
SpyBot.gen family all all all
IRC.SdBot family all all all all
RxBot family (11) all all all all all
False positive 0% 0% 1.92% 0% 0.48% 0.48% 0.9%
Detection rate 100% 100% 100% 100% 1009 100% 10Q%

The second experiment was performed utilizing gdaset of system tools. The purpose of
this experiment was to verify whether the MS Windopackage has programs that expose
malicious functionalities in their main operatiomabde. This was achieved by automatically
running all binary executables from the Windows teys folders (C:\Windows\ and
c:\Windows\System32\). For each program, our sygierformed the following steps:

Create suspended process

Initiate CPN simulator and system call monitor

Resume process and collect data until programhi@sig€xecution or after 20 second timeout
Write place reachability statistics to a repos fil

Clear Petri Net contents for the next run

arwnpE

In total, our system ran 339 programs located indews folders. All CPN statistics
reports are summarized in Tables 7 and 8. Tab&aiufes the reachability statistics for the low
(system call) level CPN (see Figure 5). The lovelg¥PN recognizes object operations exported
by the subsystem API. Hence, it has a recognitiaicepfor each necessary subsystem API
exported by kernel32.dll and ws2_32.dll. In tabletl# first column shows the names of the
libraries whose API are recognized by the CPN. $bdeond column shows name of the API
functions that export object operations recognibgdthe CPN. The third column shows the
number of programs that invoked a particular AFduteng in successful recognition of the
corresponding APIl/operation. For instance, the etaBhows that CPN recognized the
kernel32.WSASocket API in the system call flow in@& of a total of 339 programs.

It can be seen that the reachability for place®@ated with system call execution is
higher than the reachability of the API (object gb®n) places. This happens due to the fact
that a single APl may repeatedly invoke severalesyscalls resulting in many tokens for each
system call. However, during the process of APbgaition, most of the CPN transitions take
several system call tokens and fire only one APRdteel token. Note, since the number of
processed tokens decreases towards the recogpiace, the CPN simulation overhead also
decreases while as we near the moment of functigmatognition.

Table 8 presents reachability statistics for trghHisubsystem) level CPN. The low level
CPN provides the high level CPN with tokens that associated with system object operations
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involved in particular functionalities. In the tablthe second column depicts the name of the
operation or functionality that is represented tisyréspective recognition place. Similar to Table
7, the third column of Table 8 shows number of paogs that reached the particular place
associated with the functionality or object openati

Table 8 presents five functionalities of interasiatked by a grey backgroundgelf code
inject, self mailing remote shell, and executable download and exe@geshould point out that
each functionality is represented by a recognifitecce in the high level CPN. Therefore, a
functionality is detected in the program if a cgpending CPN place is reached by a program
during the test.

Tables 7 and 8 indicate that most programs opeiled &nd read/wrote some data,
however only a few accessed files of interest aglexecutables or libraries. Several programs
created a socket and established a connection,Veoyeone of them utilized that socket for
remote shell or to download an executable. As altle€PN recognition places (shaded rows)
were never reached by any of the 339 programsdiestdicating that there were zero false
positives exposed.

Table 7. Place Reachability Statistics for Low LeMeCPN

Library | System calls/API # of programs reached the pldce
ZwClose 193
ZwCreateFile 119
ZwOpenFile 106
Ntdll
(System | ZwReadFile 94
call
) ZwWWriteFile 64
ZwCreateSection 50

ZwMapViewOfSection 151

CreateProcess 36
Kernel32
CreateNamedPipe 0
(API)
ConnectNamedPipe 0
WSASocket 8
connect 6
; 7
ws2_32| bind
(AP1) listen 1
accept 0
send 4
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Table 8. Place Reachability Statistics for High Lesi CPN

Object Operation/functionality # of programs reached the place
Map file 38
Read file 15
Write file 4
File Read itself of map itself 0
Write to executable file 0
Inject self-code 0

Start process from edited or created execut 28e

Pipe created and connected 0
Named Pip
Remote shell via named pipes 0
Socket connected 6
Download and execute 0
Socket bound 7
Socket listening 1
Socket
Accepted sockets 0
Remote shell via socket 0
SMTP protocol 0
0

Self-mailing

The goal of the second experiment was to verifydeims system tools using standard
inputs in standard operating mode. Our experimshtsved zero false positives. It seems that
the reason for zero false positives could be aiteidh to the fact that windows tools only have
only necessary and limited capabilities strictlyinked by the purpose of the tool. Therefore there
is no reason for redundancy on the functional lekel instance, the registry management tool
would never download a file from a remote host, @yrbecause this functionality could be
achieved through another dedicated tool. Certasigh tools would not perform unnecessary,
potentially malicious, functionalities such as smltle inject or self-mailing.

5.2.2 False Negatives (Detection Rate).

As Table 6.indicates, for each malware containihg given functionality, our IDS
successfully detected the functionality with zeatsé negatives. Such a low false negative rate
could be attributed to the signature generalizattor instance, the Beagle worm drops itself
into the system folder, and then it e-mails its pgr@r. However, our prototype system
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successfully detected this type of self-mailing\aist because it traced the dropper as an object
relocation functionality.

While creating the AD specifications for the testedlware, we observed an interesting
fact - that malware strains within the same fanmdyely demonstrate a conceptually novel
realization. Instead, new malware strains freqyemttroduce minor alterations to their
functionality realizations such as the utilizatwinalternative APIs or changing a Local IPC, i.e.,
switching from a named pipe to shared files. We tvé® reasons for this trend. First, the
attackers try to change the malware system fodtimirorder to avoid certain AV signatures.
Second, in the case of botnets , they simply trenbance the performance of malware by
optimizing or simplifying their implementation.

5.2.3 Case Study - Password Stealing

Table 6 demonstrates that malware, such as botsaty, many malicious functionalities
as their payloads. Such diversity could be condutdosdetection. We may target not just one
malicious functionality, but rather a pattern oftlsufunctionalities that would determine the
degree of hostility of the process.

As indicated in table 6, remote hooks had sevedakfpositives. While remote keystroke
hooking may not be malicious (at least with chaagoams), keystroke stealing is certainly
malicious. The fact that the hooked (victim) pracémnsmits some data to the master process
and then the master process sends something ttntéraet, is much more suspicious. This
rather complex functionality can only be detectgdabalyzing the combined activity of both
processes (master and victim) and correlating tinmoked manipulations. In this case, such
activity combines functionalities 7, 5 and LocaCIP

The functionality mentioned above is known as Pasdwtealing and is presented in table
9. In the first step, the master malicious proceds keystroke hooks into the victim process. In
the step 2, the hook handling function in the wicprocess transmits a keylog to the master
process. Finally, in the step 3, the master prosesds keylog data to the Internet. In the table,
step 2 represents the combined activity of bothntlaster and the victim processes. While steps
1 and 3 constitute individual activity, e.g. thestest process does not need cooperation from the
victim process to perform a remote hook or to sdésid to the Internet.

Table 9. Password Stealing Functionality

Process 1 (master process) Process 2 (victim,gubpkocess)
1 | Hook to victim process keystroke events
2 Establish Inter-Process Communication (IPC) withwilcéim process
3 | Send the data to Internet |

The CPN was designed with only functional obje@sognized by external CPNs. The
transition 1.1, 2.1 and 3.1 correspond to the d&svin steps 1, 2 and 3 respectively in Table 9.
These transitions are enabled upon recognitioheftbrresponding functional operations in the
external CPNs such as: Remote Hook, Local IPC armdd®e IPC. As shown in Figure 12, node
6 represents a successful recognition of the fanatity. The remote Hook CPN recognizes the
Remote Hooking functionality, which is step ondable 9. This CPN has one recognition node
— named “Hook”. Each token in this recognition glaepresents the successful execution of a
remote hook. The color of such a token definesfdthewing: ID of the process that performed
the hook, ID of the thread that is hooked, andtyipe of hook for an instance of the keystroke
hook (WH_KEYBOARD). This CPN recognizes severaligzions of remote hooking such as:
DLL injection, direct windows hook and windows ma&gs parsing.
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Remote Hook CPN,

PID, TID, Local IPC CPN, Remote IPC CPN

idhook
PID, Buffer

11 A 4 3.1 A 4
[ Remote Hook Y { Remote IPC_Send |—
If idhook==|keystroke ’V Local IPC PID
then (PID,| TID) if type1 =[type2,
else empty PID, Endpoint, endpoint1&enpoint2 =|server&client, ID1=ID2
1.2
32 —%
@e Hook Local IPC
endpoint Senders
PID, TID
r3 (PID1, PID2)
> IPC PID

if PID=PID1 && TID=PID2 |

P P 4 _ 5 A 4 6
PID=PID2 && TID-(};IE;) Hook IPC PID IPC Keylogging

Figure 12. High Level CP-subnet for the “Password t&aler” Functionality.

Detection rate We experimented with two families of malware thratlude four variants
of the Win32.Banker and two variants of Win32.lespyccording to their description in
viruslist.com, these malware expose a functionahit we can recognize, i.e. password stealing
with IPC. Our prototype IDS successfully detectael password stealer functionality in all of the
malware that we tested.

False positive rateTo estimate false positives we experimented weéliesl popular
programs: two messengers (QIP Infium, MS Messeng®o browsers (MS Internet Explorer,
Opera), a file manager (Far), an email client (@ukl Express) and an automatic keyboard
layout switcher (Punto Switcher). The results ftacp reachability of the CPN are summarized
in table 10. This data indicates that all testemypams performed “Hooking” functionality (place
1.2 was reached) and that most of them opened RelRGt (place 3.2 was reached) and sent
some data. None of them connected to the processhwhey hooked to (place 4 was not
reached). Hence, we did not observe any falseipesion this set of software.

These results demonstrate that it is more effecoveetect complex functionalities rather
than primitive functionalities. This example shothe significant advantage of utilizing CPNs
for processes behavior recognition - that is theéitity to trace the activity of several processes
in the context of a single CPN. Moreover, in theNCRhe necessary attributes propagate as
token fields allowing for system call associatigndoocess and thread ID. This makes if possible
to recognize an interposed (system-wide) activitghsas password stealing that involves two
processes (the master process and the victimizeggs with an injected DLL).

Table 10. Place Reachability of CPN for "PasswordtBaler"
Remote Hook (1.2)| IPC established (2.3) Sende® (B Hook IPC (4) | Keylogging (6)
Far manager Y

Internet
% %

Explorer
QIiP Infium Y, v
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MS Outlook
v % %
Express
MS Messenger \ v
Opera % Y
Punto Switcher % v

5.3 Performance Overhead Evaluation

The scalability of our IDS depends on two main dagt the execution overhead of the
monitored processes and the overhead penalty of g&plralization. The first factor determines
the quantitative restriction of our IDS, i.e. hovamy processes could be protected by our IDS.
The second factor defines the qualitative resticti.e. how generic our IDS should be to
address possible obfuscations.

Process execution overhead is mostly imposed bgystem call monitor and to a much
lesser degree, by CPN processing.

The system call monitor driver is always activethe Windows Kernel. When a system
call of interest is invoked, the driver receivese&xtion control from the system service
dispatcher, reads the system call input parameterekes the original system call, reads the
output parameters of the system call and returesiwdion control back to the dispatcher. Such
reading and saving attributes contribute the noprocess execution overhead.

Each system call of interest that is invoked byracess gets processed by the CPN.
Hence, the more systems calls that we invoke pee tinit, the higher the overhead that is
imposed by CPN processing. However, our CPN exacusemantics appeared to be very
efficient in processing a large number of systefisca

Periodically, the CPN recognizer requests systeiindesa from the monitor driver. Such
User/Kernel communication imposes additional ovathéhat is minimized due to buffering
system call data and desynchronizing system calltiand output attributes. In other words, the
driver does not wait for system call execution amaly send input parameters before receiving
the output parameters.

The IDS was executed in Windows XP Professional &idRing on an AMD Athlon 64
X2 (2200 Mhz) processor with 2 Gb of memory. In @erformance tests, we evaluated the
overhead imposed by tracing different tasks andicaions. Moreover, we estimated the
performance penalty for tracing generalization fiomalities caused by behavioral de-
obfuscation.

5.3.1 Run-time Performance Analysis

We measured overhead of system and applicatios te&skg commercial benchmarks and
manual setup. To achieve consistent results on ¥WedXP, we deactivated the Windows
prefetcher, scheduled tasks and only accounteavéom runs (to minimize cache influence).
Some tests, such as file search and software lmstal were performed in a virtual machine
where we reverted the machine to the initial snapstate for each run.

The test results for the Remote Shell functionadity presented in table 11. For the sake of
brevity, we only showa select set of standard téstsare representative of execution overhead.
The table depicts two system tasks and three ajolictasks. These tasks intensively utilized
OS resources (services) resulting in a large nurobiervoked system calls. Some tasks involved
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user interaction with the GUI of the correspondeggplication. In these cases, we utilized
TestComplete software [54] to simulate user behavio

We also ran a series of benchmarks using the welvkk PC Mark 05 suite [55]. Internet
Explorer was tested using the Peacekeeper benchbirkVe ran each task/benchmark several
dozen times with identical initial conditions andngputed the mean value and standard
deviation of the execution time/score assumingranabdistribution.

In order to estimate the qualitative scalabilityoalr IDS we tested each task against two
CPN configurations: Basic and Full. The Basic cgmfation covers alternative realizations of
the functionality in question, but does not traeaeyic objects or obfuscations. In contrast, the
Full configuration traces the necessary functidpagjeneralizations and addresses all three
obfuscations. To estimate the quantitative scatgpbour IDS observeall active processes, but
CPN recognizer in all performed tests.

For each task, table 11 shows: base executionwhen the IDS is disabled (no system
call monitoring or processing) and execution tinteew the IDS is enabled with both Basic and
Full CPNs recognizing the Remote Shell functioga(ivith monitoring all active processes).
One can see that even using the Full CPN IDS doesnpose much overhead (less than 4% on
average), while monitoring more than 50 (all adgtippocesses. In fact, we also ran the IDS with
highly loaded Windows XP (more than 100 processe#)out any significant overhead. This
result shows sufficient scalability to protect@bcesses of a modern OS.

It could be seen that generalization and de-obfistaloes not impose a significant
overhead penalty (0.31% in average). Note thabmestests Base and Full CPN overheads were
considered to be invariant under a statistical typsis with 80% power. This shows that our
IDS is highly scalable and can address many adhditibehavioral obfuscations.

While the tasks in table 11 exposed some overhmady other standard computationally
expensive tests did not show any execution overhiéadinstance, Matlab did not show any
overhead because its benchmarks involved mostly anenmanipulations and math
computations which utilize few system services Itesy in a low number of invoked system
calls. Similarly, the MS Word search and replask ianposed significant overhead on the CPU,
but virtually none on the OS itself.

Table 11. Execution Overhead due to IDS

Execution (seconds / score) S
— ystem
Benchmark/Application IDS enabled Overhead
. . IDS call
(Task discretion) ) - (%)
disabled | Basic CPN Full CPN count

< | Fi 58.96 62.01 5.2 (Basic

g | Files Search 63.66 +2.04| 228250 | 5eh 168

*é‘ (Search *.exe in c:\) +0.907 +1.04 7.96(Full)

] . . .

g | Application Installation) 15 5 | 1y came 113.6 115

@ | (Install DirectX 9.0c)

35.9 37.4
c | MSWord The same 418 | 95894
= (Save a big file as rtf) +0.787 +0.52
X
O 0 i
= g WinRar _ 298 (Full)
o (Compress Window: 292 The same . 2.05 98,396
<C 296 (Basic)
system folder)
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Internet Explorer 8
(Peacekeeper Browser 202 665 657 5.3 (Basic)
Benchmark, S S S 6.4 (Full
www.futuremark.com) (Score) (Score) (Score) 4 (Fulh
icati i 4.96 4.87
_ | Application loading The same 184 | 10,345
g (Mb/sec) +0.0132 +0.355
(@] .
2.0332 1.8892
% | Web page rendering The same Z 08
8 | (pages/sec) +0.04672 +0.1088
S il i 36.827 35.746 100,508
% File Encryption . The same . 203
~ (Mb/sec) +0.134 +1.066
O 5.88 5.75 7843
o XP Startup The same 2.21
(Mb/sec) +0.022 +0.28
Basic CPN configuration
. . o 3.67%
, (with multiple realizations
Average execution overhead _ .
Full CPN configuration
, — . 3.98%
(with generalization and de-obfuscation)

5.3.2 Stress Test

The purpose of this test was to estimate the oaerloé the IDS operating under a stress
attack. The stress attack could be conducted bglevame in order to congest the IDS. Such an
attack implies invoking many system call chainshaitt closing handles causing the IDS to
process all of the objects and bind their handbesh an attack would only be successful if the
malware could effectively congest our IDS beforengmsting the OS while keeping a low
execution profile. In the case of congesting the &&h malware would be forced to expose
itself and could be detected and terminated bysgstem administration tool.

We utilized the Microsoft Performance Monitor (edn) tool to measure the runtime
overhead of the IDS. In this test, we evaluated ghdormance penalty for countering the
obfuscation through object relocation. In particulae measured the overhead imposed by the
handle and file tracing functionalities that wenéraduced by the corresponding generalization
algorithms. In this experiment, we ran accustomigiesl test program that opened 70 files
(kernel32.CreateFile) in the Windows system folded for each file it duplicated 20,000
handles (kernel32.DuplicateHandle) and 20,000 nmaysp(kernel32.CreateFileMapping). As a
result, it creates 1,400,000 distinct file objeantiles and 1,400,000 mapping (section) object
handles.

Figure 13 shows CPU usage for test program and@sirmodule. Our results indicated
that the test program consumes a substantial aned@RU cycles (around 90%), while the IDS
recognizer module imposed less than 2% overheadverage for the trace object relocation
activity. Such a drastic difference in overhead ba&nattributed to the fact that each object
creation and handle allocation imposes a certaiouatnof overhead due to parsing/updating the
internal Kernel structures, manipulating low lewbjects by Object Manager and pre-processing
system call attributes in the API implementatiovel for a simple handle duplication, the
system call invocation requires user/kernel switghthat is expensive for Windows OS. In
contrast, the CPN handle binding only requires msede memory manipulations with highly
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efficient algorithms, e.g. balancing trees, or daginter resolution, e.g. hash tables. Hence, for
each handle duplication or object creation the @Rpbses significantly less overhead.
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Figure 13. Handle Duplication Test
5.4 Conclusions

This chapter presented the experimental result®signature-based prototype IDS. This
IDS was evaluated on hundreds of legitimate programd dozens of malware that had various
types of replication engines and payloads. In gan#dre experimental results indicate low false
positives and negatives. However, the experimemtotestrated the variability in discriminatory
power of various functionalities that are frequgrekposed by malware. The experiment also
indicated that self-code inject, self-mailing areimote shell are never exposed by benign
software, thus they have near perfect discrimiyagpower and can be used for malware
detection. However, “Executable Download and Exetist exposed by benign software such as
web browser has low discriminatory power, hencecatnot be recommended for use in
signature-based detection. Regardless of the disw@ating power, the experiment successfully
demonstrated the ability to reliably detect induadl functionalities of any complexity.
Additional experiments indicated that it is mordeefive detecting complex functionalities
rather than primitive functionalities.

Finally, we performed a series of experiments tovege the IDS runtime overhead using
well-known benchmarks and manual setup. The resuisated two practical advantages. First,
the IDS caused low overhead, which was less thanS&¢ond, the overhead increase due to the
anti-obfuscation generalization constituted onl§9@. Such a low overhead difference between
original and generalized CPNs indicates that anedxpan always address many more
obfuscation techniques with negligible executiostco
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6 SUMMARY AND FUTURE WORK

We are witnessing an on-going arms race in thersplage. The ever-increasing resources
invested in the development of computer defenseggparently outweighed by low-cost efforts
of the hacker community. The term "asymmetric wa'féas perhaps the best way to describe the
existing shaky balance between defensive and offenforces in cyberspace. This report
presented research on semantic approaches to reabehavior analysis. Such research aims at
enhancing computer defenses, making them invulfeertd new, mutating and obfuscated
malware. The developed approach is implementediaed to develop scalable IDSs.

In the second section, we studied modern threatscarrent anti-virus technologies. The
analyses indicated that commercial host based malde@tection technologies are not effective
against sophisticated self-mutating malware.

In the third section, we introduced a taxonomy ddlioious functionalities of typical
malware that could be attributed to the essenaaalicious activity. In particular, we analyzed
basic self-replication mechanisms as well as séweaticious payloads. Three types of the self-
replication mechanism were discussed includingatyirself-replication, server-side replication
and client-side replication. Moreover, a wide ramjemalicious payloads was classified and
analyzed. The study indicated that self-replicai®man example of highly discriminative and
indicative malicious functionality. Obviously, tleers no reason for legitimate software to self-
replicate since it can be distributed by legitimateans (e.g. downloads and install, trial etc.).
Hence, self-replication has become of great intacethe network defense research community.
One of our goals was to model self-propagationrdento investigate and estimate the possible
impact of self-replicating software on network resses.

In the fourth section, we stated that malware n@algness can be attributed to its goals,
which can be viewed as high level functionaliti®ghile a particular functionality may have
several realizations, each realization would ctutgtia certain behavior. The behavior of each
malware can be detected dynamically by observ@xecution in a particular domain such as
the system call domain. However, it is more impart® infer high level functionality of the
malware, rather than its simple behavior. To aahid¢vis, one needs to address the three
following aspects: signature expressiveness, vahkity to behavioral obfuscation, and run-
time efficiency of signature matching.

We justified the separation of the specificatiod detection domains. We presented a new
approach for formal specification of the malicidusctionalities based on ADs defined in an
abstract domain (i.e. functional objects). We depetl and tested an automated procedure
enabling human experts responsible for the formarabf malicious behavioral pattern to
concentrate on conceptual realizations omittinggaeimplementation details.

We analyzed and classified possible behavioral saaition techniques, both inter-process
and intra-process, that can compromise existingCBBIAs a mitigating solution, the concept of
specification generalization that implies augmeaniigeneralizing) otherwise obfuscation prone
specification into more generic obfuscation restlispecification was suggested. We developed
generalization algorithms making our AD immune bduscations.

We proposed a methodology utilizing a CPN for retbgg functionalities at the system
call level. Moreover, an approach for the incorpiora of information flows into the CPN to
achieve fine-grained recognition was developedallinwe proposed an automatic procedure
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for converting a given AD into a CPN that recogsiiee defined functionality in the system call
domain, enriched with information flow data.

Our experimental results for a signature-basedopypé IDS are presented in the 5th
section. The IDS was evaluated on hundreds ofitegie programs and dozens of malware. In
general, the experimental results indicate low efgiositives and negatives. However, the
experiment demonstrated the variability in the wismatory power of various functionalities
that are frequently exposed by malware. The exmarinindicated that self-code inject, self-
mailing and remote shell are never exposed by besdjtware, thus they have near perfect
discriminatory power and can be used for malwateafi®n. However, “Executable Download
and Execute” is exposed by benign software suchwaeb browser and has low discriminatory
power, hence it cannot be recommended for a siggwiased detection. Regardless of the
discriminating power, the experiment demonstrateel ability to reliably detect individual
functionalities of any complexity. Additional exp®ments indicated that it is more effective to
detect complex functionalities rather than prinatfunctionalities.

Finally, we performed a series of experiments torege the IDS run-time overhead using
well-known benchmarks and manual setup. The resudisated two practical advantages. First,
the IDS causes low overhead which less than 4%orfsethe overhead increase due to the anti-
obfuscation generalization constitutes only 0.3%clSa low overhead difference between the
original and generalized CPNs indicates that anedxpan always address many more
obfuscation techniques with negligible executiostco

The experiments proved that signature-based betahapproach appeared to be effective
in detecting malware activity in the system calbhdon. While the anomaly propagation concept
certainly has its advantages in decreasing falsatipe rate, it was observed that all such
anomalies could be linked to various malevolentcfiomalities and detected as behavioral
signatures. Indeed, in the behavioral domain theathmodel is known and could be viewed as a
set of malicious functionalities. This is espegidiue when the threat domain is represented as
malicious functionalities and the normalcy domasnlegitimate functionalities. Due to specific
and well established goals, malware exhibits a Vienited number of malicious functionalities.
On the other hand, the number of legitimate fumatimies is only limited by the imagination of
software makers. Finally, a malicious functionalftigreat) is known and deterministic and the
only item that is not determined is a realizatidrth@ functionality (i.e. behavior). Hence, it is
critical to specify and detect a functionality nugt a behavior.

For future research, we plan to expand the listpossible behavioral obfuscation
techniques and address them into the AD generalizaiVe intend to explore the increasing role
of behavioral metamorphism as it implies the dyrmastattering of malicious functionalities
among different benign processes so that noneeoptbcesses would have a consistent system
call pattern, potentially resulting in offensivdarmation warfare. We are interested in dynamic
AD construction from the monitored behavior of psses of interest. First, this would allow for
automatic retrieval of the functionalities for arfpeular program. Establishing a set of common
functionalities representing the normal operatidnaocomputer network, would result in a
"customized normalcy profile" that will be invaldalfor the development of dependable IDS.
Second, the expansion of the data base of malidm@lmavioral signatures on the basis of
automatic functionality detection, would resultenhanced misuse based IDS. The deployment
of behavioral anomaly-based and misuse-based ID8Ildwdrastically improve computer
defenses for "high value targets"
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We believe that detecting malicious functionalitiesng generic signatures is the most
promising approach. Such an approach raises thargm® of the detector from behavior to
functionality, allowing us to identify classes ofalware that achieve the same practical
malicious goals. In other words, malware functidgalepresents the essence of maliciousness.
Hence, detecting malicious functionality is the macurate and precise method for
distinguishing malware from benign software. Moregwthe proposed technology for dynamic
functionality detection (CPN) was proven to be@éint enough for practical use in IDS.
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APPENDIX A — AD FORMALIZATION

Firstly, let us introduce some basic notations e in the formalization:
O - set of OS objects.

M - set of object manipulations (operations).

Object or manipulations have attributes

AttList: OO M - U, such that

OxOO : AttList(x) - set of attributes of the object x.
OyOM : AttList(y) - set of parameters of manipulation vy.
AttSpace O x AttLis{(O) 0 Mx AttLis{ M) - U’ such that

OxOO,DattOAttList(X) : AttSpacdx att) - set of all possible values (space) of an attebut
att of an objectx.

OyOM,DattOAttList(y) : AttSpacd y att) - set of all possible values (space) of a parameter
att of a manipulatiory.

The set of object® includes both subsystem level objects (e.g. “Figping”, “Socket”)
and Kernel objects exported to the user mode (€ifg”, "Process”, "Find file”). The set of
object manipulationaM is induced by API functions as well as systemscakrforming the
manipulations. The object manipulation parameteissgenerated by attributes of semantically
equivalent API functions that export the particutaanipulation. The function AttList] returns
list (set) of parameters of the operation

Based on the above terms, functionality is defiasdan Activity Diagram (AD) in the
following form:

F=(Nodes,Arcs,Assign,Vars )

(A-1)
where,
Vars - a set of local variables used in the object maaimns.
Nodes=[Ind State PSeudo ififalfinal } is a set of AD nodes such that,
State =Instances Mahipulations Is a set oStatenodes, where
Instances  is a multi-set of object instances defined as:
Instances ={(Ob,Attr)|[ObDO]}, (A-2)

where
[i 01.k] [NameO AttList( OB]

Attr = 1 (Name, Valu
r {( ame, Valug [Valug D{AttSpacq Ob,Nam@ D Vars } 0 Valye T )x, vars |

(A-3)

wherek is the number of critical attribute3() abstract transformation of the input
variable.

® U — universal set (set of all sets)
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In the setinstances each element represents a particular object iostavhich is
created in the context of the functionality exeentiAn object instance consists of the object
name Qb) and a set of attributesfr). Each object-th attribute Attr is represented by a tuple
(Name, Valug . The first element of the tuple represents theenafrthe attribute that is unique
for a particular object. The second element cowfing the following: value set from attribute
domain, local variable or transformation of thedloeariable. Transformatiom() is utilized for
specifying informational dependency (flow) betweattributes of the operations. Such

transformation should not be defined to specify arigrmation flow, e.g. data dependency of
any nature including control related flows.

The variables are assigned during functionalityceken. The set of attributes contains
only those attributes that are critical for funotiity execution. For example, in the functionality

presented in Table 1, the instance of the “Procebgéct (created by CreateProcess) can be
specified as:

5 (bInheritHandles, TRUE ( STARTUPINFO.dwFlags, STARTISESTDHAND)
rocess
(STARTUPINFO.hStdInput)  STARTUPINFO.hStdOutgut s

(A-4)
Manipulations - the set of invoked manipulations that is defiaed

Manipulations ~ ={(M,Param$[m OM]} (A-5)

where

Params= {( Name Valug

[i 01.k] [Name [ AttList( M), }

[Value O{AttSpacd M,Namg OVars } O b= T k, ®vars ] (A6)
where k is the number of critical parameters, H3teact transformation of the input
variable.

In the setManipulations each element represents an object manipulatiooked by
the functionality. A manipulation is defined by thlaperation name and the set of input
parameters. Every parameter is represented byaaeter name and a parameter value set that is
a subset of the corresponding parameter set orcthad be specified as a local variable or its
transformation. The set of parameters compriseyg tirdse critical parameters that determine
functionality.

Ind - a set of process identities, such that each eleofehis set represents a local ID
of the process that performs the object operatitance, every distinct process involved in the
functionality has its unique index form the &ed. This addresses the third requirement of the
specification allowing for specifying an inter-pess functionality.

Pseudo - pseudo nodes that route the control flow, preeseby: decision, merge, fork or
join.

Pseudo :{X|Type( ¥ 0{ decision merge fork J(ﬂﬂ (A-7)

where Typd ¥ is the type of the node x.
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Arcs=ControlFlow HahdleFlow is a set of directed arcs connecting operatioresod
as a union of mutually exclusive séentrolFlow andHadnleFlow .

HandleFlow [ Nodesx Node is the set of arcs (handle arcs) that corresporekécution
flow with handle inheritance. A handle arc indicatkat the destination operation (node) utilizes
the same object instance handle as a source aperatid is executed right after the source. In
other words, the source and destination operaaomperformed on the same object instance and
are involved in the same manipulation sessioneims of the UML 2.x activity diagrams syntax
[14], such arcs could be viewed as a fusion obihject flow with the control flow.

ControlFlow [0 Nodesx Node is a set of directed arcs that define the contimlv
without handle inheritance. The arc from this gedidates that the destination operation is
executed right after the source operation. Noteh sarc simply shows the execution order and
does not indicate any data binding (via handlettoibate).

Assign : Arcs - Expressiofi [ is a variable assignment and guard function shat) t

Assignmentexpressioourc g0 St

Assign (a) =
'on (@) {GuardexpressiorSource( 30 Pseudo

, DaOArcs : Sourc 3 (A-8)

Assignment expressim{zv": out ‘\‘ID Varsut] OutPa( Sourde )é} (A-9)

whereOutPar( X is a list of output parameters of object operakion

This function defines a variable assignment expoasfr corresponding arcs having the
Statenode as a source. The assignment expressioreatiiatput parameters of the arc’s source
operations to assign required local variables. Suatameters may include object descriptors
(handle, memory offset, etc) of the source openatibthe source of the arc is a Pseudo state
node, this function determines a guard expresssodedined in the original UML 2.0 activity
diagrams. Note that th&ssign function does not define an expression for evecy laut for
those where it is necessary.
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APPENDIX B - REMOTE IPC ADS

(EndPoint, ID)

b
b 1
Socket
* Vi1|=Handle
7 [ Pi 7 f Pi
Name=ID, dwOpenMode= Name=ID, dwOpenMode=
PIPE_ACCESS_OUTBOUND PIPE_ACCESS_OUTBOUND
= 3
‘] Vi=Handle V2=Handle
d
Connect
Host=ID[0]
Port=ID[1]
=)
Type:=Mailslof
Type:=Socket Handle:=ref
Handle:=V1 e
Type:=Socket
Handle:=V1
e

Figure B-1. Remote IPC- Create Operation

(Type, Handle)

Il Pipe or Mailslot  else a Type==Socket
Il 1s the pipe Duplex ?
pe)&(len(Handle)==2)
andle[0]
1 else V=Handle 2
q Recv
ReadF"e SocketHandle=Handle
PipeHandle=V IpBuffer=Buffer
Buffer=IpBuffer b Buffer =|/pBuffer

(Buffer)

Figure B-2. Remote IPC — Receive Operation
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(Type, Handle)

Type==Socket a Type==Mailslot
Il No wait operation for
Mailslots
Type==Pipe
b
Socket
Accept
SocketHandle=Handle len(Handle)==2
11 One|way pipe
J 11 Duplex pipe
2 - 3 .
Connect Pipe Connect Pipe
PipeHandle=Handle[0] PipeHandle=Handle[1]
Handle:=ret d
y e
f
» -

Figure B-3. Remote IPC —Wait Operation

(Buffer, Type, Handle)

ese @ Type==Socket

11 1s the pipe Duplex ?

If (Type==Pipe)&(len(Handle)==2)
then V=Handle[1]

else V=Handle

2
WriteFile Send
PipeHandle=V SocketHandle=Handle
IpBuffer=Buffer IpBuffer=Buffer

Figure B-4. Remote IPC — Send Operation
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APPENDIX C - GENERALIZATION FUNCTIONALITIES AD

DupH
DupP

a/\_

Y
5 4
DuplicateHandle
DupH
SourcePID=GptPID[SourceProcessHandle] DupP
TargetPID=GetPID[TargetProcessHandle]
OriginHandlein

{x : SourceHa
DupH[OriginH
DupP[OriginH

ndle in DupH[x][SourcePID]}
andle][TargetPID]+=TargetHandle
andle]+=TargetPID

Y
b

»

Figure C-1. Handle Duplication Functionality

=

DupH
DupP

L — Depth Value
PList

PList

o

PID in
PList

¢

Process
InheritHandles = TRUE

Px=PROCESS_INFORMATION.dwProcessID
if (Gen[PID]<L):
PList=[Plist, Px]
Gen[Px]=Gen[PID]+1

Figure C-2. Process Generation Functionality

A

PList
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PList

PList

WMid- FID of the master
(injector) process

T_pid - PID of the process being injected
T_tid — TID of the thread being injected

Open Process
DesiredAccess=

PROCESS_CREATE_THREAD.

&PROCESS_VM_WRITE

PIDin
PList

Mid = PID // PID of the master (injector) process

T_pid = OpenedProcess // PID of the opened
/process for dil injection

Allocate Memory
flProtect-PAGE_ EXECUTE_WRITECOPY

Addr=Base Address 57 Set Windows Hook
33— idHook=WH_KEYBOARD. PIDin
Write Process Memory HOOKPROC-TargetDLL Name HookFunh | PList
Saseadaress Addr Mid Mod-TargelDLL_Address
ThreadID~T_tid

Buffer=TargetDLL_Name

T_pid=GetPIDofThread(ThreadiD)
1/ Get PIDjof the thread being hooked

Create Remote Thread

StartAddress=Kemel32 LoadLibrary
Paramater-Addr

.

Plist=[Plist, T_pid]

Figure C-3. Code Injection Functionality
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APPENDIX D - FUNCTIONS UTILIZED IN GENERALIZATION A LGORITHMS

AddParallelFunct(F.AD OriginAD, F.AD NewAD, OriginA D.Nodes Fork,
OriginAD.Nodes Join)

It adds AD of NewAD functionality to AD of OriginADunctionality as a parallel flow
that starts right after the node Fork and join®tmin AD just before the node Join. F.AD means
set of AD of all functionalities.

NewNode=AddParalleINode(F.AD OriginAD, O M NewOperation, OriginAD.Nodes
Fork, OriginAD.Nodes Join)

Creates node representing an input operation (Nenadipn) and adds it to OriginAD
functionality as a parallel flow that starts rigifter the node Fork and joins to Origin AD just
before the node Join. This function returns addeterNewNodeO [ M is a set of objects and
manipulations.

NewNode=AddNextNode(F.AD OriginAD, O M NewOperation, OriginAD.Nodes
ParentNode)

Creates node representing an input operation (Nenadipn) and adds it to OriginAD
functionality right after the node ParentNode.

AttValue=GetAttributeValue(AD.Node.State Node, AttL ist(Node) Attr) |

Returns value of the attribute Attr of the node Blod

SetAttributeValueExpression(AD.Node.State Node, Att List(Node) Attr, String
Expression)

Sets attribute expression for Attr attribute of si@te node Node of the current AD.
| SetNodePIDExpression(AD.Node.State Node, String Exp ression) |

Sets an expression assigning PID of the node Node.

| NewVarName=CreateNewVar(InputAD.Arcs Arc, String Ex pression) |

Introduces a new variable to the current input A @Arc) that is defined with the
assignment expression (Expression). The assignexgméssion may use output attributes of the
parent of the arc and other global variables. Tamtion returns name of the newly created
variable. By current AD we mean AD being inputtoé talgorithm.

| InputAD.Nodes.State Node=GetAssignNode(InputAD.Vars var) |

Searches for and returns the node in current Azkvbutput arc assigns variable Var.
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ActiveX — framework for defining reusable software
AD — Activity Diagram

ASLR — Address Space Layout Randomization
BBIDS — Behavior Based Intrusion Detection System
CPN — Colored Petri Net

CPU - Central Processing Unit or Processor

C&C — Command and Control (botnet C&C)

DEP — Data Execution Prevention

DNS — Domain Name System

FTP — File Transfer Protocol

GSR - Gene of Self Replication

ICMP — Internet Control Message Protocol

ICQ — Messaging protocol

IDS — Intrusion Detection System

IRC — Internet Relay Chat

MIME — Multipurpose Internet Mail Extensions

MS — Microsoft Corporation

NIDS — Network based Intrusion Detection System
OS - Operating System

PLC — Programmable Logic Controller

TCP — Transmission Control Protocol
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