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1.0 OVERVIEW

Modern computer networks and the entire Internetiacreasingly vulnerable to information
attacks targeting the availability of computer eses and compromising data integrity and
confidentiality. Contemporary information assuramggrovided not through provable security
but practical security: making a system resistanattack by exceeding the time and resource
capabilities of an attacker. Thus, the odds aréawor of the skillful and motivated attacker.
Malicious software (malware) is used in the majodf these attacks, and while the technology
to detect individual malicious programs has begumature, very little progress has been made
in the detection of attacks in which multiple madics programs work together to break the
security of a system, typically in an extremelya#itey manner.

The objective of this research is the developmdra prototype system for the detection of
multipartite malware and multistage attacks, whattack from multiple points within an
information infrastructure, simultaneously (multii@) or in sequential steps (multistage).
Multipartite malware is emerging in response to tjewing ability to detect individual
malicious programs. Multistage attacks have beewrat for some time but are becoming
increasingly prevalent due to improved securityis ltmperative that these trends be countered
now, before they can establish a strong footh@dbbth are extremely insidious forms of attack
that can be made almost arbitrarily stealthy, &edefore very difficult to detect.

This research leverages the PIs’ prior experienadeveloping a novel method for the detection
of self-replicating malware, which simplifies theayin which these attacks are detected and
enables the detection of previously unknown attaskbout sacrificing detection accuracy.
Detection is based on what programs are actuallygdaoather than what they might do. Thus,
while it does not prevent the attack from infligtimocalized damage within the information
infrastructure, it prevents epidemics that resuktatastrophic damage. This research is a natural
extension to this work in which the activities ofograms across an entire information
infrastructure are monitored in order to detecicks against multiple points. Its leads not only
to an approach for detecting multipartite and rstdfge attacks, but will advance our
understanding of these emerging forms of malwadecaninter this insidious threat before it has
a chance to become the preferred method useddnkats.

The research efforts reported herein were aiméldeaturther enhancement of computer network
security systems, and were naturally geared towd#ndsenhancement of lower-level IDS
(Intrusion Detection System) detecting attackshnindividual hosts, and the development of an
upper-level IDS operating on the server level agdregating the information reported by
individual hosts. This enabled us to perform theeckon of advanced attacks, and at the same
time increase the dependability of detection denssiby significant reduction of false alarms.

Consequently, we developed, implemented and ewua technology for monitoring,
processing, and analyzing system calls at the lewst, reporting the resultant information to a
server, and correlating and analyzing the collear®drmation at the server level. This
technology facilitated early detection/mitigatiohmoultistage and multipartite stealthy (low and
slow) information attacks thus enhancing the ségwfi information infrastructures. Monitoring
of systems calls at the host level has been a teonged approach, taking advantage of known
attack techniques (misuse detection) while fatihtpathe detection of new methods of attack



(anomaly detection). Based on the prior succestheéndetection of self-replication behavior
within sequences of system calls at run-time [2], {ve continued this effort to search for a
broad class of known malicious behaviors in prograBuch detection of malicious behaviors
provided accurate information facilitating earlytetgion of multipartite and multistage attacks at
the server level. Leveraging the same capabildm#loped in the processing of systems calls
for the detection of malicious behavior, we devebbpunctional behavior profiles édgitimate
applications and services running on the hostss&@tmofiles, based on the identification of
program functional blocks derived from raw systerall csequences utilizing known
interrelationships among their parameters. At raafi processes were verified against the
corresponding profile to detect deviations fromitiegate behavior, which could indicate that the
process have been subverted for malicious purpdses.task became feasible only due to the
full exploitation of the relationships between pagders (attributes) of the dispersed individual
system calls forming a logical sequence, previoastablished by the Pls [2].

Detection of malicious activity at individual hosssnot sufficient for the detection of multistage
and multipartite malware. Therefore, we performeshitoring the host-level alerts and process
behaviors at the network-level on a server dedictdehe task of analyzing and correlating the
information. The server, having access to the “pigture” of activities across the entire
information infrastructure, technically, is capaldé detection and correlation of the events
facilitating the reconstruction of the early stagéscipient attacks against multiple points ie th
network. In addition, the information processedtly server can be archived for later forensic
analysis of attacks or vulnerability analysis ie tietwork.

The developed approach is the first of its kindaasider system call monitoring across an entire
information infrastructure. While information is assed and manipulated by individual

processes, whether legitimately or maliciously, iystem call domain represents the logical
choice for monitoring the overall operation of thetwork, engaged in legitimate or malicious

regimes. This research is novel in its primary otoye of stopping multipartite malware and

multistage stealthy attacks, which are emergingnforof attack whose potential for stealth

threatens our information infrastructure. Aimedtet detection of the specific behavior patterns
within the network at large, it has a potential fbe detection of the developing previously
unknown attack scenarios.

1.1. Detection of Information Attacks in the System CallDomain

Unification and scalability of modern computer Bt requires a complex computer
software/hardware infrastructure. This infrastroetus facilitated by a computer operating
system, which abstracts details of the hardwaren frapplication software. Applications
(programs) interface with the operating system uglothe Kernel Application Programming
Interface viasystem callsTherefore, system calls uniquely characterizelibleavior of both
malicious and legitimate computer programs, praxgdunambiguous information on what the
program actually does. While all forms of malwagquire support of a running process, system
call monitoring facilitates an ultimate method etektion.

Applications and service processes can be divideal several distinct operational phases. For
example, our preliminary experiments have iderdifitee following distinguishable operation
modes of Internet Explorer: application loadingyvesing (loading pages from the Internet) and



downloading (retrieving large files). A process htignot have one unique overall profile of
system calls due its varied functionality and unknanput conditions. However, during any one
of its execution phases a process implements dewetamany) high level functions which are
realized by similar sequences of system calls. @3diesigned for a specific purpose, these high
level functions occur with some regularity. Thuser® under varying input conditions the
histogram of system calls across a particular wwmad time would be consistent for a given
phase and unique to the application thus providiegendable information on the functionality
of the software that is being executed.

To demonstrate the feasibility of the system chdsed intrusion detection, preliminary
experiments at monitoring the system calls madevdryous processes have been performed.
These experiments used the legitimate processeéttexplorer, Notepad, and CCAPP (a non-
graphical Norton Antivirus Process). As an examplenalware, the forth generation of the
Sasser worm (W32.Sasser.D.Worm), which exploitsiffeb overflow vulnerability in LSASS
(Local Security Authority Subsystem Service), ateys process that handles Microsoft
Windows security mechanisms (local security andnlquplicies). In the experiments, 600000
system calls were monitored for legitimate processed 50000 for Sasser Worm. Figure 1
depicts randomly chosen histograms of Internet aeplin its downloading phase and of
Notepad in its editing phase. One can see thabdratns of system calls issued by Explorer
during the downloading phase are consistent (ashaxse of Notepad) while being drastically
different from those of Notepad. The figure alsowh Receiver Operation Characteristic for
classification between Internet Explorer and Notep&lassification made using the
Mahanalobis distance metric. Training (basis) seissted of 1000 histograms. By changing
distance threshold the corresponding false posan detection rates were derived. The curve
shows high detection rate and low false positiveviae range of thresholds, which indicates
dependable performance over a wide range of operati

Dalaclion Rate

Internet Explorer

Notepad—

0

Figure 1. Histogram of System Calls Issued by Interet Explorer and Notepad and
Receiver Operation Characteristic for Classification between them Using Mahalanobis
Distance



Figure 2 shows a similar set of histograms forrimée Explorer, CCAPP and the Sasser Worm.
One can see that worm has even higher consisteitbyr@spect to the system calls issued,
which can be explained by the repeated use ofaime piece of code in many threads in order to
boost the speed of propagation. CCAPP does not dyvaghical interface and carries out certain
functions similar to those of Windows services. efgnit can be expected that most windows
services will have highly consistent name distriidnuit

Internet Explorer
Sasser Worm /

CCAPP service

Figure 2. Histograms of System Calls Issued by Inteet Explorer, Sasser Worm, and
CCAPP.

These preliminary results suggest that systemdmatiain models of the operating modes for
every legitimate application/service can be obt@diaed used to create a signature of the process.
By monitoring the system calls of a process attmme, the functional modes of the process can
be verified against these signatures to detect whenprocess has been taken over by a
malicious program.

1.2. Prior Work

An earlier completed research project under the BRQ@unding has demonstrated that malicious
software, including executable and encrypted exdxetcodes, could be detected by the
detection of its self-replication activity [2]. Waithe number of malicious computer programs
that could be written is infinite, the number ofygdo implement self-replication is very limited.
Developers of malicious programs are destined #otlis same self-replication techniques again
and again. Consequently, the developed approachpiable of detecting not only known, but
also new, previously unknown malicious programs.

Figure 3 illustrates how self-replication is degettin the system call domain. The self-
replication activity of malicious codes manifedtself by generating one of a few very specific
sequences of system calls. These system calls edimked into functional blocks by certain
relationships between their input and output patareeWe have developed a database of self-



replication patterns defined in terms of these kdo®& procedure that extracts self-replication
patterns potentially dispersed within a voluminaystem call sequence has been established.
This procedure takes full advantage of almost fattyibutes accompanying every system call
that have mostly been ignored by previous reseesch#e have developed a Dynamic Code
Analyzer (DCA) that performs simultaneous monitgrof all processes executed by a computer,
forms sequences of system calls into functionathkdoand composes these blocks, if present,
into self-replication patterns. The DCA displaysmes of the processes engaged in self-
replication and suspends those that have almospletaa one of the known self-replication
routines. Then the user is given the authorityeioninate or release the suspended process.
Therefore, our DCA may not prevent a malicious c&rden inflicting damage on a particular
computer, but it prevents its spread that causegpuater epidemics. The DCA consumes not
more than 5% of the computer resources and coutdfimded” by most users in the capacity of
a resident security tool complimenting the existargivirus software. Currently, the DCA is
subjected to testing and fine-tuning.

Replication

]

-

. . N

Memory Code Injectlon>
LW PENCSENT2 -Vl » | POUCN | Nlanl,
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File Access Host Search
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Figure 3. Example of Functional Blocks Forming a S&Replication Method

Though this research has been successful at degdmith known and new forms of viruses, the
results do not directly carry over to multistagéaets or multipartite malware. Thus, while
monitoring system calls within a particular hosimguter is very informative, it has several
limitations. First, it does not allow the comprebiee network-wide “big picture” view
necessary to detect and stop multistage attackson8e the advanced processing needed to
detect multipartite malware can consume resoureg®rd those available for detection. In
addition, the individual entities making up the tipdrtite malware might exist on different
hosts, rendering host-based detection approaclkeéssasagainst them.

1.3. Research Objectives

This research was aimed at the development oftarayi® which the monitoring of system calls

is performed at the level of individual hosts ahd tesulting information is reported to a server
where it can be coalesced into a suitable formuppsrt network-wide administration and

decision making. It is important to emphasize thatinformation reported to the server does not
contain “pure system calls”, but only the alertagrated by the system call-based IDS deployed
on particular hosts. This approach facilitates oy the correlation of alerts produced by the
system call monitors at individual hosts, but alse correlation of the events observed in the



network at large over some arbitrary period of tithes enabling the detection of incipient
multistage and multipartite attacks. Since infoloratreported to the server comes with a
timestamp, host identification, and event dategrisic analysis of an attack can be performed to
aid in vulnerability analysis of the network. Inditibn, detection accuracy can be improved and
false positive rates reduced via correlation oftalat the server.

The overall structure of the proposed system iswshan Figure 4. Each monitored host
computer runs a system call-based IDS including lidafpon Behavior Modeling software,
which performs per process system call analysist hevel system call aggregation, and
transmission of the information to the server. Tedicated network analysis server receives the
information from each monitored host, performs axbeal host level analysis and network-wide
alert correlation, and performs alerting and ancigvfunctions. Each of these components is
discussed in more detail below.

Host 2

System
calls-based

Host 1

System

calls-based l t calls-based
IDS
Network Analysis,
Correlation, and
Alerting
Server

==

Figure 4. Overview of network-based system call matoring and analysis approach

The IDS deployed on each monitored network ho$taised on the earlier developed dynamic
code analyzer detects the self-replication activitye unit performs simultaneous monitoring of
all processes executed by the computer, forms segaeof system calls and extracts, if any,
known patterns of malicious activities such as-sgilication. In addition to expanding the
search for malicious activity beyond self-replicati the unit will also dynamically extract the
“signature” from each running process to be congpaoeknown signature models. All of this
information is aggregated and transmitted to timeesdor correlation and storage.

Malicious software performs operations that adugrsaffect stored data and various
hardware/software system components. When a legggimrocess is hijacked by malware, it
begins to execute under its command, issuing sysiells that are uncharacteristic of the
legitimate process. In terms of system calls isstlezlsignature of the application deviates from
the known model and can be detected. The develtgethique represents a two-pronged



approach which takes advantage of both normal modéllegitimate software (anomaly
detection) and known behavior of malware (misusteal®n). Traditionally, most research
efforts consider these approaches separate, esgotise benefits of one over the other.
However, they are complementary approaches andhgean significantly enhance the early
detection of malicious activity. While searching kmown patterns of self-replication activity in
executing processes is an extremely effective nietbodetecting viruses and worms, there are
a vast number of operations that can be considedttious, however, and one cannot always
predict in advance every insidious technique thaatéacker can use. On the other hand, one can
comprehensively model the behavior of a known appbn and detect deviations from this
model, but certain malicious behaviors might bdialift to detect. A comprehensive solution
uses the two methods in a complementary fashiomawimize detection thus minimizing the
probability of success of the attack.

The sequences of system calls issued during a grogrexecution define a signature for the
program. In modern operating systems, the systdhintarface represents a barrier between
programs and the computer’'s resources, providinfpumn access to whatever hardware lies
beneath. In all cases, system calls representeatdime line sequence of events, which can be
analyzed during the execution. For any given prectdss sequence can be large or relatively
small depending on what system resources it iagrid access. As a result, computer programs
are uniquely and completely identified by their weoces of system calls and associated
parameters. It is expected that, except for theplgish of programs, the overall sequence of
systems calls generated during any given execusidikely to be different. However, these
sequences of system calls contain some criticabesyuences that define the computational
essence of the program. They occur throughout thgr@am execution and could be viewed as a
signature uniquely representing the program. Thueasure can be detected at runtime thus
implementing a passive watermarking or verificatiapproach. These signatures can be
established for all of the authorized software ¢oelzecuted on the networked hosts and verified
at the host or at the server, depending on the atatipnal intensity of the verification process.

The structure of the resultant IDS is shown in Feg6. System calls are intercepted by an
operating system driver that hooks into the systathstack. This driver outputs for each system
call issued a tuple representing the process iiEmtisystem call identifier, parameters of
interest, and a Boolean success/failure outcomécatidg whether the system call was
successful or not. The functional block generatpasates the system calls into per-process
streams and forms them into higher level functiobkdcks. Application programmers use
application programming interfaces (APIs) and higyel-languages (HLLs) to write software.
During compilation, these programs are translatéd machine code, at which time the high-
level operations are divided into smaller piecest ttan be implemented with specific system
calls. By themselves, system calls do not provideminformation about what a program is
doing. When linked through their arguments, howgtlegy can be aggregated back into a form
that provides a representation of the higher-lgarelgram functionality. Although the system
does not necessarily aggregate back into the afighource code form, the functionality
represented by the higher-level block does proaigéndication of the behavior of the program.
Therefore, in a sense the two forms are equivalent.

The dynamic code analysis and application behawiodeling use these functional blocks as
input to implement the two-pronged detection apghodynamic code analysis matches the



higher level functional blocks representing prograperations against known malicious
activities (such as self-replication). This implarteethe misuse detection function at the host,
which looks for known instances of malicious adgiviApplication behavior modeling performs
the anomaly detection that is the complement ofiffmeamic code analysis. This block compares
the dynamic profile of system calls from each pssct® the known behavior (signature) of the
application. Alerts, indicating the presence ofaatipular malicious activity or deviations from
known behaviors of the program, can trigger coivecaction at the host; in addition, they are
forwarded to the aggregator to be sent to the séovedvanced correlation and analysis.

When attempting to elude anomaly-based approadiesskers sometimes resort to mimicry
attacks, where they try to mask the anomalous hehdy hiding it inside of a significant
amount of normal-looking activity. In the systenil ceomain, however, this is a non-trivial task.
System calls are not isolated, random entities ¢hat be issued arbitrarily. System calls have
input and output data which must follow certainesuland convention or the system call will
return unsuccessfully. One of the parameters tanbaitored in this research is the Boolean
“success/fail” outcome of every system call. Thgnature of a normal application will include a
certain mix of successful system calls. By inclgdthis parameter in the application signature
the work to be done in performing a mimicry attaskmade significantly harder because the
attacker is prevented from simply issuing a certair of system calls- they must also perform
the behavior of the “host” application.

Running System
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Figure 5. Dynamic Code Analysis and Aggregation

One can realize that there are a vast number aghbpes that can be considered malicious and
could be detected within the sequence of systets. daladdition, the sequence of system calls
produced by an application can be huge and thecima$ operation can be dispersed throughout
the sequence, or intentionally inserted in a dtgathanner making run-time detection a non-
trivial task. An attacker who utilizes this form aftack is indeed a skillful one; therefore, ttss i
the form of attack that is most crucial to detddte proposed two-pronged approach makes it
difficult for an attacker to utilize this attack @ and go unnoticed. The normal activity will be
classified and filtered out by through verificatiamf the program signature, leaving the



suspicious activity. If the attack utilizes knowahaviors, these can be detected separately by the
code analysis. Thus, the attacker must get thrdaughforms of detection, making his job
significantly more difficult.

Dynamic code analysis and application behavior riogl@lone are effective at detecting certain
forms of malicious software, but their detectionliabs are inherently limited by the host-
specific information they have access to. A netwoitte view is necessary to detect multistage
and multipartite attacks. The high-level analysid aorrelation required to detect these types of
attacks requires the computational resources ef\esdedicated to this task. In addition, having
this function contained in a dedicated server aldlae server to be hardened against attackers
who intend to circumvent detection by attackingdieéection mechanism itself.

It is proposed to develop a network analysis andetation server dedicated to the task of
detecting multipartite and multistage attacks. Tasver will receive the system call blocks that
have been formed at each monitored host as wedlleas data. This information appears as
multiple ordered streams of events which are catedl and analyzed. Correlation of alerts
implies inferring interrelationships among alertoquced at individual hosts. This can be
accomplished using a priori knowledge about knowtaci strategies or through real-time
clustering of alerts. The former approach is sugtdbr detection of known multistage attacks
only. Although the Pls do not rule out using a primowledge of attack strategies to correlate
alerts, they believe that the need to detect néaclet through application profiling (anomaly
detection) necessitates the use of a probabitkigtering methodology.

It should be understood that reporting system icdtirmation from hosts to the server can
overload the communication channels of the netwankl therefore, the volume of the reported
information must be reduced to the necessary mimmnin the proposed system, the information
transmitted between hosts and server is not rawemsyzall data but higher-level program
operations that have been created by joining t@ydthese system calls. Thus, the amount of
traffic depends on the throughput of these largerctional blocks. In addition, previous
experience with system calls analysis has shownthieaoverwhelming majority of system calls
issued in the Windows OS are those used for graphicthe proposed approach, consecutive
runs of these system calls are joined into funetiditocks, which greatly increases the amount
of compression obtained. Thus, the proposed appraat not overload the communications
network.

The information collected by the server will berstbin a database for later retrieval to facilitate
forensic analysis and vulnerability analysis. Tatabase will contain all alerts generated at
hosts as well as the server. In addition, the iddiai system call streams (aggregated into
functional blocks) will be stored using some forrh lossy compression that facilitates it
subsequent analysis with requiring enormous stosagee. Bloom filters have been applied for
this purpose. The chose method, however, will lgllliidependent on the form of the data and
will be studied.



2.0 HOST-BASED DETECTION: UTILIZING PROPAGATION BEHAVIO R OF
COMPUTER WORMS

2.1.Introduction

Our ever-growing dependence on Internet is accormagdny ever-growing concerns about the
networks vulnerability to information attacks artie tdependability of the existing network
security systems. Major threats, well recognized dovernment, private institutions and
individual users, are stemming primarily from sgibliferating malicious software such as
network worms.

Network worms perpetrating remote code executidackt such as buffer overflow, stack

overflow, heap overflow, etc., have two vital compats, propagation engine (shell code) and
exploit. The shell code being a necessary parthef gropagation engine is executed by the
vulnerable process just after the exploit vectooweed the control flow. The shell code creates
specific conditions which are utilized by the akiag worm to complete the propagation session.
Hence, every network worm performing remote codecaion attack, employs a particular type
of propagation engine and corresponding shell dodevery attack to replicate itself into the

victim machine.

The adversaries usually utilize standard propagatimyines along with available exploits of the
selected vulnerability. This could be explained the fact that reverse-engineering of the
services, determining vulnerability, developing #eploit and producing specific shell code
(propagation engine) requires special experiencekaomwledge which is possessed by a small
community of computer professional. The largestt pdrthe worms is written by so-called
“script—kiddies” [1], who utilize available explsitwith standard shell codes as buffers in the
attack packets and implement their own payload wdsilts in the new worms.

Moreover, a worm family may spawn many strainscalbed versions of the original worms.
These strains are created in order to avoid majdairexisting binary signatures of known anti-
virus databases and to prolong the life-cycle efwlorm. While recompiling the original worm
code into novel strains, the adversaries changegent@ame, synchronization object name,
registry records and employ equivalent code madtifon techniques. However, according to our
experience, versions of one worm family tend torsh@ane or two propagation engines. For
instance, W32.Sasser worm has seven known strahike W32.Padobot worm has 29 strains
and in spite of their mutations they utilize onhlyot propagation engines. This is a good
demonstration of the fact that the source codd@fworms could be easily subjected to change
to break known simple signatures, but adversarasliy change shell coder buffer since it
requires to program in specific, base-independsfe'swhat involves much more efforts. Even

11t requires computing delta offset, searchingdotry address of API functions in DLLs and perfargivariable

address alignment.
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if an effort is made to change the shell code (pgapion engine) to make it binary different, one
has to preserve the initial system call patteracioieve the propagation effect.

As a result, most of the network worms share thaes&rivial propagation engines and shell
codes. To achieve the propagation effect, the stoele must invoke system calls through API
functions to utilize operation system (OS) resosiré@onsequently, shell codes of the worms
having the same propagation engine have the saalzatéon in the system call domain.

Therefore, the task of detecting worms can be madodown to recognizing the standard
propagation engines utilizing the system call sigres.

Based on the highly successful dynamic code anal{®€A) concepts [2], the authors
developed and evaluated the Propagation EnginecidetéPED) system capable of detecting
attacks perpetrated by network worms. This systesteals the worm shell code activity
performed by a process during the attack sessiooreder, PED recognizes the type of
propagation engine employed by the worm exploitimg process. The developed PED system
utilizes Colored Petri nets (CP-net) to trace inaflal interrelated chains of system calls issued
by the monitored process to recognize high level AiRctions invoked by the process. The
detected high level functions are analyzed, noividdally but in combinations, to determine
how the process creates and manipulates objediseobperation system. Such information is
finally processed by CP-net to detect if the precastivity exhibits the functionality of the
particular types of propagation engines.

2.2.Background and Related Work

System call-based Intrusion Detection Systems (IDf#)ze two main approaches, misuse

detection and anomaly detection. Misuse detectionsmcalled signature-based detection
systems employ known traces of system calls toctletalicious activity. This approach ensures
high level of accuracy, but fails to detect prewiguunknown attacks. Anomaly-based detection
utilizes models of normal behavior of legitimatelaspecially privileged processes with respect
to invoked system calls. In the detection modesehsystems check consistency between
invoked system calls and the profile of normalcy dogiven process. Anomaly-based IDS are
able to detect unknown (new) attacks, but suffemfhigh rate of false positives.

Up to now a number of anomaly-based as well assaiased IDS have been proposed. These
systems could trace merely the order of systemeosadtution. The efficiency could be further
enhanced by analyzing arguments of system calls.

2.2.1. Anomaly Detection Using System Call without Attributes

Forrest at al. [3] proposed to build argram model of normal activity comprising possible
sequences of system calls witlelements. To build such a model, they monitor @ssdehavior

in both synthetic and real environments. During tletection phase, the IDS evaluate the
hamming distance between the current sequencestdmaycalls and the normalcy model. Then,
if the distance is greater than a specified thrieshbe sequence is attributed to anomaly.

Durante, Pietro and Mancini [4] model the applicatbehavior as a Finite State Machine (FSM),
which accepts legitimate system call executionieasscaused by particular user commands.
This approach requires comprehensive learning \epert who will trigger all possible
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commands of the application. If FSM does not actepisequence of system calls invoked after
given command, intrusion alarm will be triggeredhisTmethod is not applicable for a process
which does not have user interface such as nagwaces being most frequently chosen as
targets for attacks.

Stolfo, Eskin and Lee [5] utilize call executioreds to derive a prediction model trough Sparse
Markov Transducers. They also suggest using dynaamtext-dependent window of contiguous
system calls invoked by the process. During thed®n phase they check the predictive
(conditional) probability of the given subsequelagainst some threshold, then, if probability is
less than the threshold, the subsequence is dédammalous.

Anomaly-based systems which do not explore systath attributes usually show weak
performance, since lots of critical informationdscarded. For instance, network worm shell
code may start command interpreter throu@heateProcessfunction with inputs and outputs
associated with a socket, what could be determordd by inspecting system call attributes.
Moreover, without system call attribute data, itingpossible to relate system calls to some
functional chains that is necessary to trace amk)écts manipulation session.

2.2.2. Anomaly Detection Using System Call Attributes

Liu and Matrtin [6] use system calls traces for dete insider threats when a privileged user
tries to perform a malicious activity. They utiliferee different feature spaces to build a model
of normalcy:n-grams of system call names, histograms of systhil® over fixed window and
system calls with attributes. Each system call @laith attributes is mapped onto its binary
feature space so that dimensions are assignedstioadivalues of every parameter. They use
minimum hamming distance far-gram models and system calls attributes modeldetect
anomalous records.

Tandon and Chan [7] use rule-learning algorithrdedve a model of benign behavior for every
process. They take into account all argumentsrfdividual system calls or bag of system calls
(contiguous sequence) and build a set of speaifiesr Feature vector for a single system call
consists of such qualitative elements as: ID ofesyscall, arguments, returned value and error
status. Feature vector for a “bag of system cadl€omposed of concatenated feature vectors of
corresponding system calls from the bag. During tletection phase, feature vectors,
inconsistent with the rules, are considered as amm with some degree of certainty.

Xu at al. [8], in contrast, analyze only criticgissem calls, which are vital for gaining access or
control to the privileged target system. Their noettalso generates a pre-defined set of rules
constituting the profile of normal behavior. Auteogroup system calls and assign level of
danger to every system call. Nevertheless, thegalacohere system calls in functional chains
that results in subjective information thus failitegperform reliable detection.

Kruegel at al. [9] suggests using arguments ofitaenanagement system calls which represent
file names to be manipulated or accessed. Authepsgctifour models of normal strings of file
name arguments: string length, character distbutistring structure and token structure.
Having these four levels of model abstraction,dy&tem based on this approach is able to detect
malicious activity in terms of abnormal argumemingfs. Since the method is focused only on
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file manipulation it would not be able to detectx#€utable Download and Execute” shell code
in the case when the name of the worm image isistems$ with the string models.

It is our observation that the limitation mfgram and frequency-based models lies in speaifics
input data. These methods disregard functionatiogiships between system calls and trace only
contiguous system calls which may not be relatedamy functionality. This seems to be the
main reason of high false positive rate reportedthsy authors. The problem with attribute
models is that comprehensive learning may reqanmgel amount of learning space to contain all
distinct records of models for all system calls @irprocesses. In addition, these models do not
classify and group system calls to functional b&cknd the testing may result in high look-up
time. In contrast, the success of the earlier maeti DCA approach could be credited to the full
utilization of attributes of system calls enablitige authors to reconstruct the “gene of self-
replication” on a block-by-block basis [2].

2.2.3. Misuse Detection

Bernanshi, Gabrielli, Mancini [10] classify systeails with respect to the feasibility of utilizing
individual system calls in compromising OS secuatd integrity. The IDS also contains the
database of access control rules defined in thiesysall domain. Thus, the efficiency of the
system depends on completeness of the rule basefdarticular process. For instance, the IDS
will block any attempt to run an executable whishnever executed by the mediated process.
While the authors mention the necessity of chairapgtem calls in order to reveal dangerous
calls combinations, they do not provide any medranifor assembling system calls into
functional blocks. Hence, the system detects nmlgiactivity only based on single system call
misuse, what makes the security decision subjeatieless reliable.

Kahg and Fuller [11] employ system call frequendstribution over fixed length window as in
the input feature space and apply machine learaiggrithms to make classification between
malicious and normal system call traces. Again,attors do not take into account high level
functionality and system call semantics.

Sekar and Bowen [12] also developed high-level ifpaton language to profile system calls
usage with arguments for every process. Sequericgstem calls which conflict with the rules
of the language are treated as anomalous. Whilautiers trace sequences of calls with respect
to attributes, they do not deduce explicitly OSeabjmanipulation to reveal semantics of the
system call chains what seems to be necessargdgnize a propagation engine.

In summary, some authors propose to retrieve gading information from system call data;
others — to pre-classify system calls to exploregarical information. While such information
does not provide enough knowledge to detect maiscarctivity with high confidence, there were
a few attempts [10, 12] to deduce semantic infoiwnabn the level of primitive functional

blocks. However, recognizing merely primitive fuocial blocks would not provide complete
picture of the process behavior.

We believe that without tracing the entire functtiy of the shell code by restoring the complete
procedure of OS object manipulation confident detacdecisions cannot be made. To address
the shortcomings of the referenced approaches regope to reconstruct the entire procedure of
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OS object manipulation revealing particular higlvele operations and finally recognizing
semantically expressed high level activity as dl stoele algorithm. The proposed PED system
implicitly conducts all the recognition steps whslienulating the dedicated Colored Petri net.

2.3. Analysis of Propagation Engine Utilization

The largest library of exploits hosted by MetaspRoject [13] provides 18 possible shell codes
for Windows OS, which could be attached to the eixplector and potentially employed to
compromise security of a susceptible host. Shallesol, 2, 3, 6 and 7 could be effectively
utilized as a part of the propagation engine tdea&ha worm proliferation into the target host.
However, according to our observations, adversaniesrently employ limited set of particular
types of propagation engines in the network worms.

To estimate the tendency of propagation enginézatibn, we investigated 25 recent network
worm families including: Sasser, Welchia, Blast8lammer and Mytob. Figure 6 depicts the
propagation engine distribution among the studienwg. \WWorm propagation engines were
determined based on Symantec virus database assvedlverse engineering particular strains of
the worms. It could be observed that more than 60%he worms employ “Bind shell” engine,
while “Reverse shell” and “Executable Download dfxkcute” (ED&E) propagation engines
are shared by 30% of the worms. Finally, less th@¥ of the worms utilize other types of the
engines such as thread injection, remote commaacuéon and etc.

Table 1. Standard Shell Codes Available in MetaspibProject

Bind Shell

Reverse Shell

Bind DLL Inject

Bind Meterpreter DLL Inject

Bind VNC Server DLL Inject
Executable Download and Execute
Execute Command

Execute net user /ADD

PassiveX ActiveX Inject Meterpreter

Payload
PassiveX ActiveX Inject VNC Server

Payload

11 PassiveX ActiveX Injection Payload
12 Recv Tag Findsock Meterpreter

13 Recv Tag Findsock Shell

14 Recv Tag Findsock VNC Inject

15 Reverse DLL Inject

16 Reverse Meterpreter DLL Inject

17 Reverse Ordinal VNC Server Inject
18 Reverse VNC Server Inject
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Figure 6. Propagation Engine Utilization

The first three engines (Fig. 6) are dominantly Eygd in the worms due to the simplicity of
their utilization in the propagation session. TaBlexplains the high level operation of these
engines. The first row of the table summarizes filvectionality of the shell code of the
propagation engines. The second row reviews theitgcof the rest of the propagation engine
which is not performed in the context of the exigdiprocess, but by the legitimate means of
OosS.

One can see that the “Bind Shell” engine openstaark socket (port) and listens to the socket
until attacker gets connected to the port. Therctimmection is accepted and the shell code starts
command interpreter, for instance “cmd.exe”, whogrut and output are associated with the
socket. Eventually, the command interpreter progesst to listen for incoming commands and
execute them. Previous three steps are performatebgxploited process while executing the
shell code. The rest of the engine activity isldst step to achieve propagation. It could be seen
that the attack source simply passes commands ke metim host to download worm image
and run it.

The “Reverse Shell” engine is very similar to tH&rfd Shell”. However, in order to avoid

inbound firewall, the shell code makes victim tawgect to the attacker, instead of waiting for
connection from the attacker.
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Table 2. Propagation Engine Operation

Bind shell Reverse Shell Executable download
and Execute (ED&E)
Shell code| - Open a port - Open a port - Connect to the
(executed by the . Accept connection - Connect to the attacker server in  the
exploited process) | . Create a command - Create a command attacker host.
interpreter process that will  interpreter process that will - Download the
listen on the port fo listen on the port fo worm image

incoming commands.
(This will allow an attacker tqg
issue remote commands on
infected computer).

incoming commands.
(This will allow an attacker tg
arssue remote commands on
infected computer).

- Execute the worn

image.

The rest of the
engine (performed
legitimately by OS)

Transmit commands to th
victim host and make it t
download worm image an
execute it. For instanc
through TFTP.

eTransmit commands to th
D victim host and make it t
ddownload worm image an
eexecute it. For instanc

through TFTP.

The ED&E engine performs the entire propagatiothenshell code without post-activity as it is
performed in first two engines. It simply createsoaket, establishes a connection to the attacker
and retrieves a copy of the worm through the estaddl channel. The shell code usually uses
facility of high level protocols such as HTTP towddoad a worm, but sometimes it downloads
the worm directly through the channel using mefelp.

The above considerations indicate that a) diffevemtms, “members” of different families tend
to share the same propagation engines, and b) tingbaer of totally different types of
propagation engine is limited. At the first stadeh® propagation session, the worm shell code
is executed by the target, i.e. the vulnerable ggsecTo achieve the propagation effect, the shell
code has to utilize system resources trough utdiAPI functions. As a result, each type of shell
code would have its own system call execution pattelence, one can detect and recognize
particular system call signatures of the propagatagines. Therefore, the task of detecting
worm attacks can be narrowed down to recognizireg dfopagation engines based upon the
system calls signature.

2.4.Recognition of the Propagation Engine

As it was established above, during the first stalgpropagation, the shell code invokes high
level API functions. For instance, consider therapen of the shell code of the “Bind Shell”
engine on the subsystem (API) level. It was noteava that the “Bind Shell” engine has quite
primitive shell code to be executed by compromigextess and this code invokes several high
level APIs. One of the realizations of such a sbetle for Windows OS is presented in Table 3.
It could be seen that socket object is createdguSotketAPI than it is put on listening state
throughListenfunction and after accepting a connection the canmdrinterpreter (“cmd.exe”) is
started byCreateFilefunction with input and output set to the sockadie.
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Table 3. Bind Shell Engine High Level Implementatia

API (function) Parameters Description
1  s=socket(...) _outs Opens a socket
2 bind(s) _insockets Bind the socket
3 listen(s) _insockets Put the socket to listen state
4  sl=accept(s) _isockets Accept a connection to the
_outsl socket
5 CreateProcess(“‘cmd.exe”,...) _inpszlmageNan¥cmd.exe” Start command interpreter with

_in STARTUPINFhStdInputsl standard output and input being
_in STARTUPINFhStdOutputsl tied to the connected socket

A propagation engine may have several realizatisith respect to high level functions.

However, according to our experience, such higtellerariations tend to preserve the same
implementation with respect to system calls. Fatance, bind shell engine may be realized
through anonymous pipes as well as through AP$w®di in Table 3. However, both high level
realizations are translated into the same sequehcgystem calls. Hence, for the sake of
reliability, propagation engines should be recogdiat the system call level.

In order to recognize the shell code type, onetthasodel shell code activity in the system call
domain. System calls by themselves do not providemaplete picture of the process activity;
however, system calls create and manipulate obctie means of handles and other system
descriptors. Hence, we are more concerned of wiadit ode does with OS objects. For instance
in the realization presented in Table 3, the “Bldell” engine creates an OS object named
socket and puts it in the listening state to aceepbnnection. Thus, in the case of “Bind Shell”
engine, we have to trace socket manipulation ireotd detect the malicious functionality. To
track object manipulation we have to relate systaiis by object handles. In other words, the
model has to follow inheritance of the object hasdlised by system calls and reveal chains of
system calls. However, the shell code may haverakebains not related to each other until
some specific moment. Hence, the model must hazengmory and the ability to trace system
call chains in parallel. Therefore, it is requitedprovide parallelism, memory and inheritance,
what could be addressed by utilizing Petri Netd.[14

Since system calls are related by the handle vatu€®slored Petri Net (CP-net) must be utilized
to formally describe the operation of a propagagagine in the system call domain. CP-nets are
able to model particular activity in terms of aoso(transitions) and states (places) at any desired
level of abstraction thus providing the necessanyegalization. Such a general model would be
able to recognize the type of propagation enginspite of possible code modifications or OS
version. Moreover, due to the parallel structurehef Petri nets the model realization would be
compact causing low computational overhead.

The CP-net could formally be presented as a tuglg [

CPN=(CPRT ANFEGE) 1)
where:C — color set,P — set of places] — set of transitionsA — set of arcs and etc.

The color setsconstitute OS object handles employed by systefts @nd other system
descriptors such as file names.
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To address the specifics of our problem, we hagktend the original formalism of the CP-net in
the way thaset of placesonsists of tree disjoint dedicated subsets:

P=SE BE R, 2)
where S — set of system calls placeB — set of functional blocks of system callR, —
recognition nodes.

Thus, each place of the s8tcorresponds to particular system call and itsriekare defined as
ordered pairs of certain attributes of the execstediem call. Places of the d8tcontain tokens
representing successful execution of corresponiingtional block. Recognition places froR
represent successful recognition of the propagargine.

Another extension we introduced into the class{€Binet is the inclusion dhlet and outlet
transitions The inlet transitions correspond to the systelesacution which results in firing a
new token to the corresponding place. The outhatsitions represent handle elimination, for
instance througiNtClosesystem call, which results in destroying tokemfrthe corresponding
place usually belonging to the st Ordinary, transitions assemble system calls ¢itains
(functional blocks) represented by places from se¢B. Hence, each token represents an
instance of execution of particular chain of systeatls interconnected by object handles,
pointers, etc.

In the context of the same process, different dbjeannot share the same handle value. Hence
the CP-net is free of conflicts what significangiynplifies implementation since we do not have
to carry out conflict resolution policy.

Figure 7 shows a reduced version CP-net for thedBihell” propagation engine. The set of
placesP = SE BE F of the full version of CP-net is defined in thdidaing way:

NtCreateProcess NtCreateProcessE
5= NtCreateFilgd NtOpenFile 3)
NtWriteFile, NtWriteVirtualMemory

NtDevicelOControl NtClose

"File_ Section,
"File__Section Process
B= ., @)
Socket open
"Shell  opeh

R={"Bind_ Shell} 5)

The network has a recognition node which represamtsistance of “Bind Shell”. Due to space
limitations, the Petri network is depicted withotgken outlet nodes which reflect object
elimination throughNtClose system call. Moreover, the network misses seval@rnative

(undocumented) system calls which act the same has driginal ones. For instance
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NtCreateProcessEss functionally identical td\tCreateProcessbut has different entry point
address. The prototype IDS employs the full versanthe Petri net with all necessary
components included.

h1= (In) h1= (Out)
(M.h2) | o (Out) s=
A 4
() If “cmd.exe’<=s then 1'h1, zf.(;\? E\;i)ce\Afd\ <=sthen
Y A 4
Socket (driver)
open
(h1,h2) h1
7 section (h2,h3)
Fom—-m-—-—o- h2
! color H =real | Yy v
| color S=string | ' ' g ) h1 h1
| varh1, h2, h3 - H | File_Section File_Section_Prcess process
lvars:S ! 'y 7y
————————————— h2
A
(h1,h2) | , Create h1 (h1,h2,h3)
r Thi= (in)
(h1,h2) :;: (Cl)n)t (h1,h2,h3)| h2=Buffer_offset+24
= (Out) h3=Buffer_offset+28

Figure 7. CP-net for Bind Shell Propagation Engine

The CP-net in Figure 7 has two color sets (typ&ke former type (H) is a handle and its
variables represent object handles. The later g&b(S) is a string which describes names of the
files. Color and variable declarations listed igl¥e 7 are written using the syntax of CPN
markup language [14]. Also, the network has foutetintransitions: NtCreateSection
NtCreateFile NtCreateProcesandNtWriteVirtualMemory These transitions are enabled at the
moment of successful execution of the correspongdiygjem calls. The outgoing arcs of the
system call transitions are provided with inscops which define token structure and variable
initialization. For instance, wheNtCreateProcessystem call is invoked, the corresponding
transition is enabled and fires a token which dtutsts an ordered pair of two handles: handle of
the process (input parameter) and the section Bgodtput parameter). There are also ordinary
transitions such as “Open file and create sectiasiiich are enabled with particular events such
as execution of the related chain of system cdlls.used complex arc expressions to minimize
the structure of the network. For instance, thaesgion of the ingoing arc to “Shell open” place
checks if the file name contains the “cmd.exengfriand if it does, the network fires file handle
as a token to the place, otherwise it does noapything.
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The transitionNtCreateFileis enabled if the corresponding system call han lexecuted. One
can see that the token can be fired to one ofviloeptaces depending on the result of outgoing
arc expressions with thHeleNameparameter. If the file name contains “\Device\Afdtipoint”
string, then it means that the OS opens an instafdbe AFD.sys driver which abstractly
emulates a socket object. In faBpcketfunction from WS2_32.dlinvokesCreateFilefunction

to open the driver instance and the handle of theedwill be ultimately employed as a handle
of the socket object. Hence, in the Petri net @nogair of the handle is added to the “Socket
open” place. This means that socket is createdsarghdy to be bound to a process.

The system callNtCreateSectionNtCreateFilewith “cmd.exe” andNtCreateProcessimply
perform necessary steps for starting the “cmd.gx@tess. We should point out, that only
properly related system calls result in firing ansition. Hence, transition “Open file and create
section” is enabled MitCreateSectiosystem call has file handle being equal to thalleaaf the
opened “cmd.exe” file. Therefore, this transitidne$ section handle as a handle token to
“File_Section” place only if ingoing tokens matcécé other (values of hl variables are equal in
both tokens). Place “File_Section_Process” cornedpdo the state at which the address space of
the process is allocated and Windows is ready titiaie the process. System call
NtWriteVirtualMemmorymaps CreateProcesgparameters to the process address space. The
transition “Bind socket to the process” is enalifeithe input and output handles of the process
are equal to the handle of the socket that indschireding the opened socket to the process.

We intentionally omitted some minor system calldrassitions in the network. In particular, in
the real network utilized in the prototype IDS, rihés NtDeviceloControlFiletransition (system
call) located after “Socket (driver) open placehid system call sends commands to the driver
ordering it to put the socket ofisten or accept state. Moreover, we did not include
NtCreateThreacand NtResumeThreattansitions (system calls) which constitute fistéps in
the process creation and running.

The CP-net depicted in Figure 7 is not merely a lewel map of the high level implementation
of the “Bind Shell” engine. Since, according to axperiments, different realizations and
modifications of the original engine are detectgdh® same network, the Petri Net in Figure 7
is a general signature of the particular type efghopagation engine.

Furthermore, we designed CP-nets for the shellxoflsuch propagation engines as ED&E and
“Reverse shell”. Parallel structure of Petri Ndtsv@ed us to merge several networks of different
engines into one general, multi-engine network. Singplified version of the general network is
depicted in Figure 8. This network is able to reung “Bind Shell”, “Reverse Shell” as well as
ED&E propagation engines.

The multi-engine network has three recognition gdawhich represent successful detection of
the corresponding propagation engines. The paitttehetwork which recognizes “Bind Shell”
engine is structurally similar to the network deedt in Figure 7. However, the file name
(variables) is delivered to the place “Executable startedatdllows to recognize the Bind Shell
engine if the file name is “cmd.exe”, or the ED&Bgee if the executed file has already been
downloaded.
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The network also contains two major states “Exduetsstarted” and “File downloaded”.
“Executable started” corresponds to successful i@t of CreateProces#\PI (kernel32.dll).
“File download” could be achieved through the sempaeof high level APIs (wininet.dll -
InternetOpenURL, InternetReadFile, CreateFile, ®File), or through subsystem level
implementation (kernel32.dll — Socket, Connect, &dRecv, CreateFile, WriteFile). However,
both high level realizations of “File download” fetionality have the common implementation
in system call level which involvddtDevicelOControlFile and NtWriteFilseystem calls.

The general network is more compact due to thetpahintegration which are the parts related
to NtOpenFileand “Executable started” place. The node “Exedatabarted” is shared as an
input by the recognition places of the correspogdngines. Hence, the entire substructure of
the network (upper-left), which is involved in takdelivery to the “Executable started” place, is
shared and employed in recognizing of three sepamgines. Such integration on the structural
level significantly reduces size of the overallvek.
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Figure 8. General "Multi-Engine” CP-net

2.5. Experimental Evaluation

In this section we evaluate the performance ofptoposed approach. We designed a general
CP-net capable of recognizing three propagationnesg ED&E, “Bind Shell” and “Reverse
Shell”. Then, we implemented a prototype of PropiagaEngine Detector (PED) based on the
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designed CP-net and deployed a set of attackstumVienvironment to evaluate the efficiency of
the proposed approach. Finally, we measured the @RlUmemory overhead imposed by the
PED system.

2.5.1. Experimental Setup

The experiments were conducted in the virtual ngtwestbed at Binghamton University [15].
The testbed, being scalable up to 1000 nodes, wafigared for virtual network comprising

hundred victim hosts and one attacker host. Thénvitosts were represented by virtual
machines with vulnerable versions of Windows O3uding the prototype PED. The attack was
performed by a worm from the attacker host agae®sth victim hosts resulting in worm

propagation into the victim virtual machines.

We experimented with 10 notable network worms presskin Table 4. Every worm has been
reverse-engineered deeply up to the point of r@wgdhe exploit vector and shell code buffers
supposed to be sent as payload in the attack mackeme of the worms (Francette, Welchia)
have shell code buffer encrypted and decrypt it pefore sending. Hence, in order to extract
exploit and shell code buffers we had to utilize-time debugger and TCP dump software to
record and process attacking packets payload. Wwnerse-engineering is not a trivial task, we
have spent even more efforts to extract exploit stmell code of the propagation engines of the
worms.

Having exploit and shell code buffers, we were ablencorporate them into a benign worm
specially designed for the experiments. This expental, completely observable and
controllable worm allows for the development of usgecified attack scenarios. All realization
of this worm equipped with various shell codes axgloits share the single payload which
simply reports to the control server every wormpa@ation step: arrival, deployment, starting of
the attack session and proliferation status. Thismwalso provides necessary functionalities for
completing propagation session for different engiir@uch functionalities include: TFTP/FTP
server for “BindShell” engine and TCP server folasgling the image in case of utilization
ED&E engine.

The utilization of the experimental worm with diféat shell codes of the originally tested “real”
worms allowed for the test unification and assutied dependability of the results without
sacrificing generality of the experiments. Moreqguweany “real” worms have imperfections in
certain modules utilized in propagation session,ristance W32.Welchia.A worm has bugs in
TFTP server what may result in unsuccessful refiinaHowever, the experimental worm has
more reliable modules and its propagation rateccbalmuch higher.

2.5.2. Results

We performed two sets of experiments. In the Bett we deployed attacks from the designated
attacking host onto victim machines utilizing thgerimental worm equipped with propagation

engines of the “real” worms subjected to the ingasion (Tab. 4). During these attacks the

target hosts were in the idle mode, i.e. we didpasform or emulate user activity on the victim

hosts during the attack session. Consequentlyetheperiments allowed for the evaluation of

the rate of false negatives.
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The propagation engine of every worm in Table 4 employed in more than fifty consequent

attacks perpetrated from the attacker host agaamstomly selected victim hosts. During these
attacks our system monitored corresponding vulhergbocesses and correctly detected and
recognized propagation engines for every attacki@eshowing no false negatives.

For the purpose of experiments we developed spesdftware (Attack station) that controls
propagation of the experimental worm and colled&na reports from local propagation
detectors. Figure 9 shows a screenshot of Attaatkost at the moment when the custom worm
with propagation engine of W32.Welchia.A completefitcting 52 virtual machines. In Figure
9, the left half of the table lists attacks repdrbg the worm instances just after being deployed
in the victim machine. The attack report (generdigdhe payload of the experimental worm)
includes the victim host name, attacker host nantetene of starting the worm instance. The
right half of the table to in Figure 9 (detectia@sults) summarizes alarm reports received from
the prototype PED systems.

Figure 9. Attack Session Perpetrated by W32.Welchia Worm

The alarm reports include: detected engine typst &iod process name raised an alarm and time
of detection. As it could be seen from the Figuree9ery attack was properly detected.
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Moreover, the PED system triggers alarms sevei@rsis earlier than the worm executes its
payload that shows high efficiency of the proposggroach (the timelines of the detection
decisions). Since the system detects particulactiomality (shell code of propagation engine)
before the worm actually replicates into the vigtinwe potentially can prevent worm
proliferation without performing denial of servioéthe process being exploited. For instance in
case of Bind Shell engine we can block any conaestito the newly created command
interpreter from the machine which connected mestmtly to the host that triggered alarm.

As it could be seen in Table 4, original wormsizgildifferent exploits and some of them attack
different Windows versions. However, we used thmesaversion of PED in both Windows
versions. The last column depicts propagation engimd a protocol used for retrieving the worm
to the victim machine. We should point out that \3@o0 worm and W32.Shelp worm utilize
very different realizations of ED&E engine. W32.lbalirectly retrieves a worm copy through
the open TCP channel, while W32.Shelp uses HTTPhtamads to download worm image from
the dedicated web site. However, in spite of raéitin differences in engines, PED successfully
recognized the propagation engine type what indgchigh reliability of the proposed approach.

Table 4. Network Worms Being Tested

Worm name (aliases) Vulnerability (MS code) Targyettem Propagation engine  (upload
protocol)
W32.Welchia.A DCOM RPC (MS03-026)] Win XP Spl Reseeshell (TFTP)
W32.Sasser.C LSASS (MS04-011) Win 2000 Sp4Bindshell (FTP)
Win XP Spl

W32.Zotob.F (Bozori.A) Plug and Play (MS05-035) V2000 Sp4 Bindshell (TFTP)

Wa32.lberio (Hiberium.B ) Plug and Play (MS05-03p) irnv2000 Sp4 Executable download and
Execute (direct download through
TCP channel)

W32.Raleka DCOM RPC (MS03-026 Win XP Spl Bindshell (ECHO, direct
injection)
W32/Alasrou-A (Small.D) LSASS (MS04-011) Win20004Sp | Bindshell (TFTP)
Win XP Spl
W32.Kasshot(W32.Nanspy) DCOM RPC (MS03-026) Win3{1 Bindshell (TFTP)
W32.Shelp LSASS (MS04-011) Win 2000 Sp4,Executable download and
Win XP Spl Execute (HTTP from dedicated
site)
W32.Blaster (Lovesan) DCOM RPC (MS03-026)  WinXP Spl| Bindshell (TFTP)
W32.Francette DCOM RPC (MS03-026 Win XP Spl BiredisfTFTP)

The second set of experiments was performed withbeat deployment of attacks just to
investigate false positives. The PED system moaitoegular legitimate processes maintaining
most windows services such as: Isass, svchostogonl, csrss and etc. PED also observed
processes invoked by applications such as: acrab&tpad, explorer, iexplore. On these virtual
machines we browsed internet, manipulated fileshpagad various windows components and
performed other activity trivial for an advanceceusNone of the monitored processes caused
false positive, since they did not exhibit any bababeing attributed to the shell code activity.

The above experiments showed zero false positidezano false negative for a limited set of
legitimate processes and ten worms (Tab. 4) tedtenhg limited time period. While authors
believe that the proposed approach is cable ofctetemost of the existing worms and future
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worms utilizing standard propagation engines, sadhigh detection rate cannot be guaranteed
for the future malware attacks. The authors dazedhat no detection technique is perfect and it
is expected that some sophisticated adversary megtec a worm with conceptually new
propagation engine which is not yet reflected bg ©P-net of PED. However, any new
propagation engine is expected to result in a regattern in system call domain that may be
easily incorporated into the Petri Net of PED emgpufuture detections of the worms based on
the new engine.

2.5.3. Runtime Overhead

We utilized WinTask Professional (Uniblue System)measure overhead of the detector. The
PED system was executed in Windows XP ProfessiS8®a running on AMD Athlon 64 X2
(2200 Mhz) processor with 2 Gb of memory. Figure shdws CPU and memory resources
consumed by PED in contrast to total usage ovemitiite interval. It could be seen that PED
system utilizes less than 2% of CPU time in average little spikes caused by high load of the
entire system due to some intense tasks. Reganaémgory usage, PED system consumes about
1.032 Mb of total 2Gb of memory.

Such a low CPU overhead could be credited to tbetfeat we hook and monitor only small set
of system calls participating in particular CP-N®ince the system call monitor is implemented

in the Kernel mode, hooking small set of systeniscapares large amount of computations
needed to perform costly data transmission to P¥sem running in the user mode.

Figure 10. CPU and Memory Usage

26



2.5.4. Conclusion

A novel network worm detection approach based emtifying the shell code activity on the
system call level which is an essential part of ghgpagation engine of the worm is presented.
We employed Colored Petri Nets in Propagation Em@etector (PED) system, which appeared
to be very efficient in recognizing high level fulomality in terms of OS object manipulation
and attributing it to the malicious behavior.

Since we recognize propagation engines on the kystém call) level, different high-level

realizations of the same type of propagation engjianee been successfully identified with the
same Petri net. Moreover, the PED system recogronés the first stage of the propagation
session (the shell code functionality), what makesdetector robust to various modifications of
the original, standard propagation engines. Sinodéynporphism and metamorphism of
worms/shell codes affects only binary structurethef code without affecting the system call
execution pattern, the developed technology vulilerto polymorphism and metamorphism of
malware.

We developed a PED system and experimented witmeémork worms and three propagation
engines. The experimental results did not dematestadse positives or false negatives showing
high dependability of the proposed approach.

As a future work we propose the correlation of ladarms on network level in order to further
increase the confidence of the detection decisiAdditionally, we plan to study possible ways
to prevent consequent worm replication after thellstode has been executed and detected.
Particularly, a set of engine-specific countermeasuimely blocking the worm propagation
functionality could be developed. It is importahat blocking functionality would not cause
denial of service for operation system components.
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3.0 HOST-BASED DETECTION: UTILIZING NON-STATIONARY MARK OV CHAINS

3.1. Introduction

The first Intrusion Detection System (IDS) utiligirsystem calls was proposed in [3]. Today,
these systems utilize two main approaches, misateciion and anomaly detection. Misuse or
signature-based detection systems utilize desoniptiof known attack expressed in terms of
system calls. Although signature-based systemsoavide high level of accuracy, they fail to
detect previously unknown attacks. Anomaly detectgystems utilize models of normal
behavior of legitimate processes, especially pgeld ones. These systems check the
consistency between the invoked system calls aedtbfile of normality for a given process
and have the potential to detect unknown attat¢ksjgh they frequently suffer from a high rate
of false positives.

This research targets anomaly-based IDSs thatii@ gptheir advantages are impractical due to
high rate of false positives. The limited succedsnown research aimed at the alleviation of this
problem [4, 7, 8, 16] in our view could be tracedthe fact that it was primarily aimed at the
improving the accuracy of the normality models {ipes) rather than achieving high confidence
in classifying detected anomaly.

Two major contributions of this paper are as fobowrirstly, a novel host-level anomaly
detection mechanism is proposed. Secondly, havingemt host level anomaly detection, we
can declare a unique but rather simple princifdése positives do not propagatthat is
suggested as the basis for establishing with hegjree of confidence, whether detected anomaly
is a false positive or a true positive.

In anomaly detection mechanism we utilize non-stetry Markov models. While many shell
codes and exploits (in buffer overflow attack) mage only 20-30 system calls what would
certainly be concealed in a histogram, Markov m®dmle clearly preferable to other order
insensitive techniques (such us frequency histogyammed to model normality profiles [3, 16].
However, the common assumption that the sourceliapipn or service) is a stationary
stochastic process generally may not by true. Applieation or services utilize high level
functions intended to solve different tasks. Wharapplication realizes several related tasks or
group of tasks which condition each other, it ipmased to operate in one of its distinct phases
(modes). For example, our preliminary experimengveh identified the following major
operation modes of Internet Explorer: applicatioading, browsing (loading pages from the
Internet) and downloading (retrieving large files)These operation phases are distinguished by
functionality and achieve different goals. SincHedent operation modes would have their own
realization with respect to system calls, it canassumed that operation phases have different
unconditional as well as conditional distributionsgstem calls. Hence, the system calls profile
of an application or service should be modeled @grastationary stochastic process.

We Lutilize so-called “moving omnibus” method to tadiguish bifurcation points (points of
sudden change in dynamics) in observed data, whathld confine its stationary phases. Then
we use obtained phases to train Markov models. Assalt each process would have set of
Markov models corresponding to each operation phasa would certainly increase model
consistency.
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We expect to dramatically decrease false positiwescorrelation of anomaly reports from
different hosts in the network. The main distingpaisle feature of viral software is self-
replication. It is differently implemented in vies and worms and can be revealed by the
detection of specific (abnormal) sequences of asysialls [2]. As the self-replication continues,
the propagation of the same abnormal activity patteuld be observed within the network. We
call it the anomaly propagation.

The utilization of system call attributes providesambiguous representation of the connectivity
between various computers and processes withingtweork. Then, if the anomaly propagation
pattern is consistent with the process connectpatiyern, it could be declared with a high degree
of certainty that the detected anomalyrige positive otherwise it idalse positive

The proposed IDS approach has two levels of impieation, the host-level anomaly detection,
and the network-level attack detectioVe propose a new concept targeted to decrease false
positive of anomaly based IDS in system call doma&im mitigate false positives, we suggest
network based correlation of collected anomaliesnfdifferent hosts as well as new means of
host-based anomaly detection.

We formulated a novel concept of anomaly propagattat could be summarized as: false
alarms must not propagate within the network. Tioeeg should an anomaly propagation be
observed, we can attribute it to a propagating wastherwise the alarms are to be treated as
false positives. The rationale behind the condegtih the fact that the most common feature of
worms and viruses is self-replication. As replicatiakes place, a malicious code propagating
through the network would carry out the same asgtikesulting in almost identical system call
sequences and triggering the same alarm at ditfdrests. While system calls clearly reveal
interactions between hosts, the alarm propagatitactewould be detected what distinguishes
“true alarms” from “false positives”.

Efficiency of propagation analysis presumably dejseon accuracy of the anomaly detection on
the hosts. Existing host based anomaly detectiblerses may not be dependable enough to
provide solid basis for new anomaly correlation capt. Therefore, to make propagation
analysis feasible, we propose a new anomaly detectiechanism operating on the host level
that employs non-stationary Markov models. Manyligppons or services may operate in
different modes, which have different dynamics witlspect to system call issuance modeling.
Therefore, we treat application or service as astationary stochastic process and model it as a
non-stationary Markov chain what significantly iroge model consistency compared to
stationary Markov chain.

3.1.1. Related Work

Signature-based IDS utilizing system call datakaw@wn in literature. The feasibility of anomaly
detection using system calls is shown in [3], [4B]. The efficiency of this approach can be
enhanced further by the analysis of system calbates as shown in [6], [7], [8], [9], and [17].
Additional improvement of this approach was demiatst in [2]. The misuse detection-based
IDS approach could be best exemplified by [18]][19
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3.2. Anomaly Detection

Traditionally anomaly detection procedure consiastsecognizing process behavior deviation
from the profile of normalcy. On the system caltsr@in the IDS looks for abnormal trace of
system calls according to the model and considen sace as anomalous. The efficiency of the
anomaly detection depends on the model accurasy b€kt way to model the application in the
system calls domain is to derive system call execugraph which would explicitly reflect all
possible braches in algorithms. However, it is isgble to process all possible branches of
initial algorithms from the binary code due to theplicit logic transitions (jumps). Thus we can
only derive approximate model, what adds some @egrfe uncertainty in the application
description. To reflect such uncertainty, we casua®e that system calls emitted by some
stochastic source (an application) with categomstaie space represented by system calls.

Any application or services utilize high level fulons these functions are intended to solve
different tasks. When an application realizes sdveorrelated tasks or group of tasks which
condition each other, it is supposed to operat®na of its distinct phases (modes). These
operation phases are distinguished by functionalitg achieve different goals. Since different
operation modes would have their own realizatiothwespect to system calls, it can be assumed
that operation phases would have different uncandit as well as conditional distribution of
system calls. Hence, system calls profile of anliegion or service can not be modeled as
stationary stochastic process, but as non-stayatachastic process.

Operation phases consist of many system callsraptément some strictly prescribed high-level

tasks. This consideration assumes the source statienary over each operation phase. Since
dynamics of the stochastic process are appearkd tavariant over an operation phase, we can
model operation phases by Markov chains. Therefiwe source would be modeled by set of

Markov models corresponding to each operation phase

In this context, the trace of system calls is coesad to be anomalous if it is not likely to happen
according to current Markov model (correspondinguaent operation phase). The sequence is
not expected to happen if it was not predicted rkdv model. Therefore, the anomaly score
can be chosen as prediction performance of the d&arkodel over the observed sequence.
Prediction performance can be represented by clarsqlikelihood ratio of the observed
sequence of certain window. If chi-square likelidoatio exceeds specified threshold we declare
observed sequence as anomalous.

3.3.3.3 Operation Phase Detection

Before deriving Markov models, operation phases tnhes distinguished automatically in

unsupervised fashion. We have to apply such metlwbech for the given sequence of

observations (system calls) would determine bifiwcapoints (moments of dramatic change in
process dynamics). These bifurcation points woeltiainly correspond to moments of operation
phase switching.

One of the most efficient techniques for detectbifyrcation points is moving “omnibus”
method. The method is simple extension of rathassital “omnibus” method. The latter one

uses Pearson’s? hypothesis test. The observed sequence of sitst®n calls)
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(S={s,...8}) (6)
is partitioned by two contiguous subsequenc8s=({s,...,.s.} and S, ={s.,,....S, ) fof some
dividing point k. Then, every subsequence5,S,) is used as training set to compute
corresponding transition matrixT(T,). We can state the following test to checkkifis
bifurcation point:

Ho TG, 1) =T G, j), versus HyiT,@, ) TG, ]) (7)
where,T is global transition matrix computed over the ensequencs.

If the null hypothesis is rejected then transitiopbabilities are time variant due to dynamic
change in poink. Therefore, rejection oH, points out thak is bifurcation point with some

degree of confidence. To implement the test (7)cese compute test statistic in the following
way:

w=" " npRGCD-TCDS o GED-TGD)S (@)
k=1i,j=1 TG, ])) TG@,]))
where N, (i), N, (i) - marginal observed frequency of i-th state defif@m first and second
subsequences respectively.

By the central limit theorem, statistd/ is asymptotically distributed ag?with 2(m- 1)2

degree of freedom under null hypothesis. Hence,care compute p-value of the test in the
following way:

Puave = 1- Fc (\N) (9)
where F, - c®cdf . If p-value lower than chosen test sizewe rejectH, and claim non-
stationarity with|a - p,,, significance.

The “moving omnibus” method consists in derivingglue for test (1) with respect to center
point of the window sliding over the observed seupee(trace). The sliding window must be

long enough to derive local Markov models from k& and right halves of the window. The

points rejecting null hypothesis would be declarasl bifurcation points. Having set of

bifurcation points we can chose the most appropraates according to constraints for phase
minimum length and number of phases. The algoritbmselecting such points is proposed
below.

Input constraints:
n —number of locally stationary phases
l.., —minimum length of a phase

Algorithm:

1. Form list L of sorted bifurcation points in decreasing ordethwiespect to
significance.
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2. Take first n points from listL and compute length of phases enclosed by these
points

3. For every phase, which length is less thigp delete from the list less
significant boundary point.

4. Continue step 2 until all constrained are met er¢hs no enough points left in
the list.

If the process has enough locally stationary petidde algorithm will determine bifurcation
points enclosing these periods in the observedesexgu

Let us demonstrate efficiency of the algorithm eal process. The sequence of system calls was
observed during two operation phases of the Intdtrplorer. First phase was browsing through
different sites without downloading big files arftetsecond phase was downloading big files
from some sites. It was known that system calldofahg 15000 were invoked during
downloading phase. Figure 11 depicts results ofdlgerithm. Plot shows p-value for every
separated point moved from 5000 instance to the adnithe sequence (40000). The size of
hypothesis testing was 5 percent. It could be ghahthe test was rejected only once in the
separating point 15000 what shows high accuracybififrcation point detection. P-value
changed dramatically in earlier points (13000-14000t never reached significance level. The
results of the experiment showed high efficienfiyh@ moving “omnibus” method.
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Figure 11. Bifurcation Point Detection

32



Having facility to recognize stationary operatidmapes in observed sequence of system calls, we
can use these segments (subsequences) of stasésn(syalls) to derive Markov models in
offline. Nevertheless, in testing regime, it is @ggary to recognize (in real time) what phase the
monitored application operates in to apply corresilagy Markov model. The problem of
matching current outcomes to set of models wasesddd in several publications (e.g. Stolfo
[16]). Many authors use simple approach consistingying different models form the set and
choosing the one which best fits according to sdstance metric. We used the similar method,
if current Markov model is not consistent accordiogredicting performance metric (likelihood
ratio), the system searches for the model havieggtieatest performance. To avoid undesired
frequent model change we introduced a constrainommum number of system calls before
model switching is allowed.

3.4. Markov Models Order Detection

System calls are invoked according to some algoritthich has a specific logical structure and
solves its own tasks which constitute operationspha Since system calls are issued in
consecutive logic order, the probability of occawge of system calls depends on not only one
previous system call, but several preceding systaits (prefix of system calls). These
considerations lead to necessity of using high rokdi@kov models what is expected to further
increase the models efficiency with respect to [19]

The order of the Markov chain corresponding to peration phase is unknown, hence has to be
determined. There are several approaches to deteronder of Markov model consistent with
observed sequence [20]. These methods includssitian correlation based method, chi-square
statistics of the transition frequency, index @ngition complexity and information theoretic
approach.

In the proposed system, information theoretic apghois used to determine proper order of
Markov model. The rationale beside the approathdadact that if probability of occurrence of a
state highly depends om previous states then mutual information of therenir state and n
preceding states must be greater than informatised on less thanpast states. The criteria for
defining best order of the Markov model can be falflynpresented in the following way:

1. Starting fromn=1
5. Compute n-gram transition probabilitigg |iy,...,i,)
where, p (]i,...,i,) probability of occurring state given past prefix of states,...,i, (order

preserving prefix)

6. Computen+1 andn order mutual information:

1(X 03 Xy X, ) = p(iy....i.,. )log —_p(—il’“fi““)_ (10)
ifodned LNT p(|n+1) p(ll """ I n)
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7. 1(X,; X,....X,.;) -to be computed analogically

D= 1(X, 5 Xpoees X, )= 1K, X X ) (11)

8. If D <t then stop, otherwisa=n+ ahd go to step 2

This algorithm will derive the maximum order of thdel which still provides specified mutual
information increase. In reality mutual informaticate is decreasing function of the model order
for given observation sequence. Our preliminary eexpents showed that phases have
maximally third order models.

3.5. Anomaly Detection

The abnormal sequence of system calls will haveldhelikelihood ratio what is indicative of
unpredictability by the Markov model. We employ thg likelihood ratio:

X|
LOX)=- In(p(X [ X1 % 2+ X)), (12)
i=1
where X is sequence of the system calls in question,Markov model order. Note that the
higher theL(X), the less predictable is the sequence.

Abnormal sequence of system calls must result gh meak of the log likelihood ratio which
value is bigger than some threshold. Then the systls representing the points of the segment
higher than threshold would be recognized as abalbsaquence. However, according to our
experience, the shell code may have inconsistkaliliobod ratio due to some high level APIs
which are used frequently during legitimate acyivf the process and consequently reflected in
the model. For instance in the Figure 12, the dhdhee is likelihood ratio and the entire
segment (marked by arrow) corresponding enclosesivbyhigh blue spikes should be treated as
anomaly. However, one can see that the centralgfadhie segment (marked by rectangle) has
log likelihood less than threshold. This will péidh the sequence and eventually decrease the
efficiency of the system.
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Figure 12. Transitivity Closure of the Log Likelihood Ratio

To address such shortcomings we proposed to utiteesitivity closure as maximum mean
value of sub-segments of the original segment. Eléhe new function would be expressed in
the following way:

C() = max(mean L(i- j)..L(i+ k) ) (13)

j k<t

It could be seen that the new function solid lires lzonsistently high value over the likelihood
spikes and does not have rapid drop allowing dieigthe abnormal sequence of system calls as
a permanent segment.

System calls are invoked according some algoritimmish have logical structure and solves its
own tasks which constitute operation phases. Sgstem calls are issued in consecutive logic
order, the probability of occurrence of system aépends on not only one previous system
call, but several preceding system calls (prefixsgétem calls). These considerations lead to
necessity of using high order Markov models.

The order of the Markov chain corresponding to paration phase is not known, hence has to
be determined. There are several approaches tordeeeorder of Markov model consistent with
observed sequence. These methods include: transitorelation based method, chi-square
statistics of the transition frequency, index angition complexity and information theoretic
approach.

We used information theoretic approach to deternpn@per order of Markov model. The

rationale beside the approach is the fact thawibability of occurrence of a state highly depends
on n previous states then mutual information of therentr state and n preceding states must be
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greater than information based on less thgrast states. The criteria for defining best omfer
the Markov model can be formally presented in tiliving way:

1. Starting fromn= 1

9. Compute n-gram transition probabilitigs( |i,,...,i,)

where, p(,i,,...,I,) probability of occurring state given past prefix of states,...,i,

(order preserving prefix)

10. Computen+1 andn order mutual information:

I(xn+1;xl """ xn) = p(in+11"1i1)|og M (14)
ipyded LN P P(inseilp)

11. 1(X,; X,,...,X,.;) - to be computed analogically
D= 1 (X0 Xgpeer X )= 1K X peen X1 ) (15)

12.1f D <t then stop, otherwisa=n+ &hd go to step 2

This algorithm will derive the maximum order of thdel which still provides specified mutual
information increase. In reality mutual informaticate is decreasing function of the model order
for given observation sequence. Our preliminaryegxpents showed that phases have at most
third order models.

3.6. Experimental Results

We performed trace based simulation using recosgistem calls were from legitimate processes
as well as malicious software. As malicious agest,choose forth generation of Sasser worm —
Sasser.D worm. Simulated legitimate processesdecdMicrosoft Internet Explorer and CCAPP.
We do not claim comprehensive monitoring in thesdiminary experiments, however size of
records constituted tens of thousands. For instawee used 50000 system calls issued by
Internet Explorer for crating Markov models. Wecalecorded 24 contiguous system calls
invoked by victim process executing Sasser wornmaqaaly

Using the system call records, we obtained nonestaty models for three chosen processes.
Figure 13 depicts call prediction performance f@APP process based on stationary Markov
model versus non-stationary model. Non-stationagdeh contains three dynamic invariant
chains. The trends present chi square likelihodid statistic which formally reflects prediction
performance, the lower statistic the better préatictExamining the curves we can see that non-
stationary Markov model (solid line) totally outpems stationary model (dashed line).
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Figure 13. Predicting Performance for CCAPP
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4.0 SERVER-LEVEL INTRUSION DETECTION

4.1. Anomaly Replication Detection

The main distinguishable feature of an activitygstrated by malicious software such as worms
or viruses is self-replication. Viruses have toateea file containing its copy or attach itself to
some victim file. In contrast, worms do not haveutwlertake any file operations in the memory
space of the victim process, but perform some igtion behalf of the victim, legitimate
process. Hence, worms may not leave any file “Baaghich can be used to detect self-
replication. Worms attack packets consisting ofeaploit vector followed by a propagation
engine. To perform some activity the worm code nuisize system resources through system
calls, which will be certainly reflected in the pess behavior and will be detected as an
anomaly.

To the best of our knowledge, modern worms couldriodti-exploit and packet polymorphic,
however they are expected to utilize the same gragpan engine in every attack. The biggest
collection of exploit payloads offered by the Metast Project [13] has several propagation
engines including: bind shell, thread injectionndows remote control, etc. For instance, for
bind shell, the propagation engine runs the comnsduall having input bound to a socket being
in a listening mode. Usually, adversaries utilizee @ropagation engine in their worms. As a
result, the same functionality would be carried auevery instance of an attack. Attacks with
several propagation engines are possible as welaemaddressed later.

One can see the advantage of tracing the systdmigsaiead of the packet contents. While an
adversary may write a polymorphic worm whose attpakket payload may be different from
instance to instance, every attack would carry a@tinctionally invariant propagation engine
which leads to the same system calls executiorqpatEor instance, in the case of a bind shell
payload, some instructions can be changed preggfuimctionality of the engine, but still the
payload has to create a socket, assign it to a poeate a command shell and accept a
connection, which requires invoking a certain segeeof system calls. Hence, every copy of the
worm would carry out the same activity that wouebult in similar system calls traces and
similar detected anomaly for the victim processHEserefore, the self-propagation could be
detected in terms of anomalous system calls trammscurring on different hosts of the network.
We call this phenomenon “anomaly propagation”.

To distinguish the “anomaly propagation” from a gktoincidences (meaningless occurrence of
the same anomaly at different nodes of the netwamhg has to analyze the connectivity pattern
of the nodes. If the propagation pattern is coasistvith the connectivity pattern between hosts,
we claim that “anomaly propagation” takes place ttumalicious activity. On the other hand, if
anomaly propagation is inconsistent with the cotimiég pattern, we declare it be a false
positive.

Anomaly propagation analysis requires distinguighisimilar or equivalent abnormalities
indicative of the same propagation engine. Anomakegments of system calls detected on the
hosts are separated into thread specific sequeresited to the server, and provided with a
time stamp and source host ID. Detectors must gplitormal segments into thread specific
sequences because the worm shell code is execytatelthread.
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A server compiles the received anomalies into bffie groups containing equivalent system call
sequences. The distance between two anomaliefinedén the following way:

~ malcs.s)I Gl> §)
e WEYAEY)
where |C(S, )| is the length of common subsequence of anomaltirsgs and Cis the

minimal common factor of the compact set of factoepresenting the subsequence. The
numerator specifies the value kfas the minimum length of the common segments af tw

sequence$s, S) declared to be equivalent.

(16)

Initially, we used just the length of the longestmemon segment, but eventually we realized that
this definition would be significant only for progation engines having a linear execution path.
If a propagation code has some branches with teeution path, then the common factor may
be fragmented and some segments may diverge foamamalies recorded from different attack

instances. The distance (16) tolerates the existefcelatively small call execution branches

within the matching segments. In fact, the metti6)(is not really a distance, since it does not
satisfy triangular inequality; however, it seembéoa suitable measure of anomaly similarity.

An anomaly equivalence measure can be definedre#pect to distance (16) as well as another
metric:

max(c s 811 GI> §)

17
max(|S, .1S 1) (")

d(s, $)=1-

One can see that (17) and compute the percentage abn-common part for shorter and longer
system call strings respectively. Distances (1% provide the basis for the establishment of
specific groups of equivalent anomalies defineteirms of system calls.

During the execution, a reported anomalous straagjiience) would first be checked against the
existing groups and will be added to the approprgtoup as an equivalent to the anomalies
contained in the group. Formally, anomayis added to the grou@ that contains strin@ if

the following equivalency relation holds:

S Sl Giff (ds Rs,)&( 6.SR ,) (18)

One can see that the equivalency relationship iEl&flexive, commutative, and transitive for
group members. Hence, group members are formallyivalgnt according to the
relationship (18).

If none of the groups is equivalent to the new aalgimthe system will continue checking the

anomaly with the anomalies contained in the pookileg for a candidate for the new group. We
should point out that, an anomaly cannot be adddbe group if the group already contains an
anomaly reported by the same host. To avoid pdfation, close anomalies from the same host
are represented by the longest of them.
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The system tracks the group size (number of memlaeis if the size exceeds some threshold,
the system analyzes the pattern of propagatiomommalies in the group to reveal the fact of
replication. Replication activity is detected usitige connectivity pattern (graph) that is

represented by weighted directed graph. Such ehgtép, E) with nodes being hosts and edges

connecting attacker and victim hosts weighted wethative time of the TCP session beginning in
case of TCP port and UDP packet arriving in cas&JOP port to be listened by the process
issued anomaly.

Anomaly propagation is considered to contain aicapbn pattern if it is consistent with the
connectivity graph in both topological and time senin other words, if anomaly is replicating,
it must propagate according to simple rules:

- Each new instance of anomaly (except the first ame$t occur in the process which has
recently been interacted by another suspicious gg®qwhich already reported an
anomaly).

The time elapsed from the last interaction and aipraccurrence must not be longer
than the prescribed threshold (active window).

For the multipartite attack (coordinated multi smumalicious activity) the first rule must
tolerate the presence of several sources.

Iterative algorithm verifying if anomaly propagatian the group has replication pattern is
straightforward:

Input information:
New anomaly, being added to the group ={V,,...V, }

Weighted adjacency matrix T of the connectivitydvd,T (i, j) = weigh(E(V,,V, ))
Algorithm:
1. Get the subset of group members connected to anomplocess:

S={v:(vi G)&(T(,v,) >0} (19)
2. Check if the last connection time is less thanshodd: \r}llig(T(V,VA)< Thax

3. Increment the counter of the group members ppédicig in the replication
k=k+1

4. If the normalized counter is exceeds the threslﬁdiyqt;| >t ), declare that the
network is under attack

5. If the group size exceeds the prescribed valuetldormalized counter value is
under the tolerance vaI(Ie/|G| <tol)& QG| > s ), declare a false positive.
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The rationale behind the proposed distance formaliss in the fact that processes may be
attacked and subverted at any time. Thus we capcexpat anomaly sequences would have
different short suffixes (segment of legitimatetsys calls). Subsequence from the beginning to
the legitimate suffix would be a large segment fiognthe pure sequence of system calls
actually invoked by the worm’s payload. Hence, aalmus sequences caused by the same worm
will have large common factor which would cons&tigome segment of “malicious” system
calls.

The longest common factor between two strings (Méhgth n, m) can be found through
dynamic programming witftO(n>m gfomputational complexity. Hence, determining thesest

group by a one-to-one search would exhid{tN >*m complexity, where N — is the sum of the
length of strings in the cumulative anomaly dicaon However, we do not need to know the
longest common factor itself to compute the distal{&,G), but only the length of the factor.
The length of thedS,g Jcan be approximated by the length of longest comsubsequence

which can be found trough weighted Levenshteinadis¢ for the case wheqS,§ cpnstitutes

significant part in both sequences. The longest mom subsequence is not necessary
contiguous, but due to high performance of the psed anomaly detector, one can expect that
the “alien” part of the anomalous substring (comnfactor) would be much longer than the
legitimate one thus justifying the approximation.

The edit distance is weighted so that, deletiorratmms would not constitute any penalty score.

Formally, the length of the longest common factbsequences and Scan be represented in
the following way:

| ¢SS) =|5- L.(SS)
Ly (S9)= (S9)- Ly (20)
I-(Sg) = I-sub+ Linsert+ L

delete

where, L(S,§ ) - is the Levinstein (edit) distance betweSrand S, Lo L L - are

number of substitution, insertion and deletion afiens respectively, and
L\N(S,§):Lsub+L represents the weighted edit distance with zemoalpg of deletion

operation.

insert? —delete

insert

Expressions (17) and (18) show that by minimizlggS, §) we minimize the distancd(S,G .)
The problem of finding the closest anomaly group be reformulated in the following way:
given the dictionary of strings (sequencBsand a pattern strin§, find the stringé from the
dictionary which is the closest ®with respect to weighted edit distantg (S, §). Having the
closest stringé, we consider the distance (1) as distance toringpgthe stringé belongs to.

Such a problem is calleabproximate dictionary queryingnd is addressed in several papers [13,
15, 20]. Yates and Navarro [20] use metric propeftyedit distance (triangular inequality) to

neatly organize vocabulary as a metric space. Slath structure reduces dictionary query
complexity to O(NlogN ). Brodal and Gasieniec utilized cell-probe modeathieve very low
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complexity. Nevertheless the method handles oné mrsmatch queriesly, (S, §) £1) what is

not applicable to our problem (length of the suffould be more than 1). We suggest using the
method presented by Cole and Lewenstein which ss&slled the longest common prefix data
structure to organize the vocabulary. The methadhamndle cases with edit distance more than
one and has query complexity

k
o) m+%loglogN (21)

which is less tharO(NlogN gndO(N>m) for k,m<<n, whered — is the number of strings in
the dictionary,k — specified maximum (preferred) distance in thergue — some constant
Since, legitimate prefix is expected to be smallam anomalous sequence, the preferred edit
distancek would be also small. The only modification in thlgorithm concerns the objective
function, which must be changed to weighted editattice depicted in expression (18).

After defining the closest group of anomalies, $fistem must analyze the pattern of propagation
of anomalies in the group to reveal the replicafeature. The replication property is determined
through the processes connectivity pattern. Thenectivity pattern (or connectivity graph) is

represented by weighted directed grapf/,E with nodes being processes in different hosts

and edges presenting last interaction. If one @®cEnds some data to the port of another
process it listens to, we assume that the sendeegs interacted with the second one. Thus, if a
procesneinteracted with the proces$so, the system adds edge to the graph (or upgradfes it
there is already one) with the weight equal tortHative interaction time.

This algorithm provides score which is comparethteshold to decide if anomaly propagation
is indeed replication. The score takes into accolmtrelative number of instances matched to
replication pattern and shows how much the propagaimilar to replication pattern. If the size
of the group exceeded some size threshold and st pretty low system will declare false
positive. Since only false positive may have mangtances (unknown operation phase
massively turned in many hosts) and not have pratpay pattern.

4.2.1DS Implementation and Practical Improvements

Based on the models presented in the previousossctihe authors have implemented an IDS
operating in MS Windows environment. The IDS cotssef a client part and a server part. The
client agents (installed on every host covered ey IDS) monitor system calls invoked by

selected processes to detect anomalies. A serpdicaion receives abnormal sequences from
the clients and performs anomaly propagation aiglys

During IDS development, we introduced several pcatimprovements to the original version.
In order to decrease the overhead, the IDS cliees ot monitor and analyze system calls of
the selected process until the process interadis airemote host. After detecting such an
interaction, the IDS client analyzes system callsdtablish the fact of normal process operation
or abnormal activity. Then the system returns te tmaiting mode. Currently, we use the
WInPCAP library to detect 3-way handshake of TC8&&m. The authors need to point out that
the system only analyzes SYN packets captured gatted by the WinPCAP driver working in
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kernel-level packet filtering mode so the overhdad the user-level packet processing is
minimal.

During the attack the system calls of the shellecadbuld be executed in the thread which
invoked the susceptible function being exploitetderefore, all shell code system calls would
have one thread ID. Since proposed anomaly detease process specific model, “malicious”
system calls may be interchanged with possiblyediifit normal calls invoked by other threads
from generation to generation of the worm. Themfothe server separates received call
sequence into thread-specific subsequences befatgzing.

The authors do realize that an anomaly propagai@tern could be specifically factorized if the
worm were to cyclically use a different shell catesuccessive generation steps. To address this
problem we propose to extend propagation analiisigh combining graphs and analyzing the
obtained general graph. This graph will have ndagsnging to one of the combined groups.
Thus, if the worm propagated using different sloeltles, the combined graph will preserve
propagation structure demonstrating an alarm prag@ay which may reflect several different
anomalies.

The authors are also aware of methods to obfugmatpagation detection through random
insertion of dummy system calls in the propagagmgine, and will address this issue in the
future research.

4.3. Experimental Studies

Experimental studies were conducted in two waystFan the stage of approach evaluation we
performed simulation of the worm attack in MATLABIng system call traces of real worm and
legitimate software. Such simulation allowed ugs$timate the potential of the proposed system
to reveal shell code traces within the legitimatevity of the software which is free of particular
vulnerabilities and cannot be yet compromised l&y weorms in real environment. Moreover, it
allowed us to estimate the threshold distributiérthe worm detection in different simulated
attacks.

Then we experimented with real worms in virtuatastructure to assess the performance of our
prototype implementation of the IDS utilizing Maskkochains and server-level system
performing alarm correlation.

4.3.1. Trace Based Simulation

The trace based simulations were conducted usialgdega comprising traces of system calls
recorded from legitimate processes as well as makcsoftware. For the malware we chose the
forth generation of the Sasser worm — Sasser.D w&eneral legitimate processes including
Microsoft Internet Explorer were also used.

We gathered data from the processes in variousatpermodes and crated traces of system
calls. While the process monitoring could not baimked to be comprehensive, the size of
records comprised tens of thousands calls. Foamest we utilized 50,000 system calls issued
by Internet Explorer to compute Markov models. Wsaecorded several contiguous system
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calls invoked by a victim process executing thellsbede of the Sasser worm. Hence, this
segment of system calls constituted the worm trace.

After obtaining Markov models, we performed diseréime simulation in MATLAB. In the
beginning of the simulation, 500 fictitious homogeas processes, running on 500 imaginary
hosts, were assigned random starting index of gystl in the trace (pool) of the recorded calls
from some fixed legitimate process. Then we assuthatlprocesses start execution form the
assigned position. The rationale behind such sinomas that for a sufficiently large trace, it is
reasonable to expect that any starting point dhigtion may happen in real life. In other words, if
the trace of a process is really long, then thacess in any host will eventually pass through
some segment in the trace during the corresporapegation phase in real life.

Simulated processes running in 500 hosts invokstkry calls from the general trace one after
one starting from the assigned position. The dpkryod between two subsequent invoked calls
was generated at random. This helped to reflettreimt delays of system calls execution due to
the operation system overload that frequently happe real life, especially during massive viral
attack. To simulate the connectivity between preessevery process’s connection to another
process was chosen at randomly with some stochfgtahanging periodicity.

An attack was simulated through inserting Sassagnent in front of the current trace position
of target process. The target process virtuallyok®d the worm trace and continues invoking
system calls from the legitimate trace, what reflébe normal execution return in real life. The
attack pattern was specified in advance and peddrmith corresponding virtual inter-process
connections.

The Sasser.D worm is indented to attack LSASS pmcdeut today this vulnerability is well
known and any antivirus software can detect it.c8isystem calls invoked in the penetrated
process reflects not the exploit itself, but thelkshode, we assumed that the same shell code
may be used in other attacks for different proeessg different exploits. Thus, we decided to
simulate attack on the Internet Explorer. On theepthand, the Internet Explorer was chosen for
simulation because it is a quite complicated preocggh respect to modeling in system call
domain.

Simulated attacks were in slow warm fashion. 3@ed#nt attacks were emulated, and all of
them were detected at early stages.

The results of one of the attack detection aregmtesl below. The propagation score of one of
the attacks is depicted in the Figure 14. It shA®&sgroups arranged in the score descending
order. The first group contains indexes of attackedts. One can see that the other “normal”
groups have score five times lower than score efattacked group. The attack was detected
after four infected processes, what shows agilitthe detection scheme in spate of the lots of
noise factor provided by connectivity simulation.
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Figure 14. Propagation Score

Figure 15 shows the local false positive rate afsthfour processes which participate in the
attack pattern. This false positives illustrate thest-based detection without propagation
analysis, decision made on hosts before sendingnalyoto server. One can see that for
threshold less then 20 all of the hosts have higlllfalse positive. We repeated in offline the
same attack but with local thresholds ranging fridrto 20. In all cases attack was successfully
detected and no global false positive observed,twhaws robustness of the network level

detection.
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Figure 15. False Positive Rate for Different Thresblds

Figure 16 illustrates the predicting performancewé of the attacked hosts. The big wide spike
is due to Sasser trace. In this case a worm anonaalya high score, but likelihood ratio depends
on model quality what may end up in good predicfmnworm trace (in case of bad model) and
as a result in false negative of host based detec®ne can see that for threshold 15 stride
dashed line, even if the statistic would be truadadlown to shaded region (small dashed) what
is three times less, the worm trace would anywagdtected locally and sent to the server. And
as it was mentioned above attack for local threshHobm 10 to 20 (including 15) was
successfully detected. This simulated result shthas even for bad model the network level
detection can still reveal the attack.
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Figure 16. Anomaly Score (Predicting Performance)

4.3.2. Real Environment Experiments

“Real life” experiments were performed utilizingetiBinghamton University network testbed
[15] hosted 200 virtual machines with vulnerablesi@ns of Windows XP. We experimented
with two real worms W32.Welchia.G and W32.Shelp.A.

According to Symantec.com W32.Welchia worm is ntdbr its high geographical distribution
and traffic load. For our experiment, we had toerse-engineer and modify the original worm.
In order to make its propagation faster we remd®&iexploit, date checking, and Blaster worm
subverting engine. Additionally, we restricted thietim scan space. The modified version
exploits the RPC DCOM vulnerability and scans onlinerable and reachable hosts resulting in
an increased propagation rate.

W32.Shelp.A worm was reverse-engineered deeplyoupéd level of extracting shell code and
exploit buffers. The shell code was incorporatdd educational worm. As a result we obtained
the controllable worm with original propagation argpossessed by W32.Shelp.A worm.

The predicting capability of non-stationary modelsrsus stationary models for several
legitimate processes (services) including: Svci{gs®2C DCOM), Internet Explorer, LSASS,
CCAPP was presented in the previous Section. Thetaunched W32.Welchia worm 20 times
with an arbitrarily chosen attack deployment node set the threshold for replication score to
0.75 and the minimum size of the group to 5 hdst&igure 17, the solid line (left axis) shows
the number of infected hosts before anomaly projpagaletection and the dashed line (right
axis) determines the mean distance between thg sepresenting the group that raised an alarm
and the members of the group. During every attawtance the system detects anomaly
propagation after 5 to 13 hosts have already b&fected and on average after 8 hosts have been
infected. The mean distance fluctuates from 0.08.1®, which demonstrates a high member
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similarity. We did not observe any false positiyggoup spawned by non-worm sequences being
attributed to propagation), which demonstrateshijb performance of the IDS.

Figure 17. Number of Infected Hosts and Anomaly Grop Score upon the Detection

W32.Shelp.A worm employs executable download aretete propagation engine and has very
intense activity in terms of system calls. Its slsede invokes high level API functions such as
“InternetOpenURL” and “InternetReadFile” to estahliconnection with remote host. Then the
shell code downloads worm image through http pmtoghat results in long and highly
repeatable chain of system calls. Our system detrated even higher performance with such
propagation engine preserving mean group distanmend 0.1 and number of infected hosts
around 6 hosts.

For the arbitrarily chosen infected host #14, Fegli8 shows the likelihood function (LF)
recorded during the attack. One can see that thekaits detected reliably (wide spike) and the
segment having a LF that is higher than 100 waatdtkas an anomaly and reported to the
server.
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Figure 18. Likelihood Function

4.4.Server-Based IDS

The above results justify the development of a pnetvoriented intrusion detection system (IDS)
based on monitoring hosts behavior in terms ofrihtesst communication and activity. The
system distinguishes suspicious activity of a pssceurrently running on the given host by
analyzing system calls invoked by the process. [Df is designed to monitor theetwork
system calls as well as to analyze their input patars and flags what allows the IDS to reveal
suspicious system calls quite dependably. The ddgarof the IDS is that it is able to recognize
inter-host suspicious activity inheritance in terofsbehavior commonality among suspicious
hosts using “malicious” system calls. The systemldd@onsist of two levels, the host level and
the server level. The host level is representedhieyhosts equipped with a special software
module which monitors and pre-selects suspiciossesy calls and reports them to the server
level. The server level software maps suspicioustesy calls on pre-defined attack graphs,
computes the distance between suspicious sequandesorresponding attack graph, constructs
so-called suspicious activity tree and derives liypiical joint probability of false positive thus
providing a score to the intrusion detector.

We present two approaches on which IDS could bedathe inter-host based and network
based. Inter-host detection is based on systens cadinitoring and recognizing potentially
“malicious” network system calls provided with @t input parameters. System calls are
monitored for every process being active in thet lsystem and detection decisions are made
using the local information regarding the host. $#euld point out that this approach is not an
anomaly detection which is usually prone to haxghhate of false positives due to system state
changes (installation of a new application, presipuunseen legitimate behavior of the
processes). We rather look for special behavioegygtipulated by certain system calls pre-
defined by an expert. However, the system detadtsevability exploiting the phase perpetrated
by malicious software, so it is not a signaturedolbapproach in its classical meaning.
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Regardless its realization, a virus invokes cergistem calls to exploit a vulnerability. For
instance, replication (attack) procedure of bufteerflow regardless virus implementation
details would anyway use appropriate network systaelts to establish connection to victim host
and send malicious code. An IDS expert is not meguto know viruses or worms a priory; but
instead he/she must just encode currently exigtkpdoits in terms of system calls. Then the IDS
would be able to detect new viruses provided trsyknown type of exploit. Since virus makers
rarely invent conceptually new types of exploitsywrviruses would have common “system calls
signature” that is crucial for the success of th&.l Such system calls invoked by the virus or
worm would have special (“malicious”) input paraerstwhat is used as one of the indicators of
suspiciousness of the given process.

The network-based approach takes into account agmepsive information collected from the
set of hosts serviced by IDS. Knowing suspiciousnacios derived from different hosts
(processes) and time stamps of system calls assdciaith appropriate attacks, we can
recognize similar activity pattern in terms of asled goals. Even if the virus is metamorphic
(i.e. every generation has a different implemeatgtit will achieve the same goals during its
propagation. These purposes may be recognized aymst-preconditions analysis. Having
suspicious activity pattern one can define theeséor detection procedure.

4.4.1. Inter-Host Based Detection

Consider a virus replication procedure in Win32 @&t involves some certain API functions
(system calls) to be invoked. Replication of a re@twirus from one host (attacker) to another
(victim) utilizes special kind of API functions -etwork system calls which are intended to do
affect in some ways the victim process. We cangeize the direction of such system calls in
terms of source (invoking process) and destinafiargeted process). System calls themselves
considered to be suspicious if some certain atedflags) are used as input parameters. In
order to copy itself, the infected process invogedain system calls, directed to the victim, with
“malicious” parameters in definite sequence. Onemame such a sequence an attack sequence.
We distinguish preconditions and post-conditionsstdges of the infection process. Each
“malicious” system call in the attack sequence meguparticular preconditions (provided by
successful implementation of previous function ire tattack sequence) and creates post-
conditions. Sequence of pre and post-conditionagalith attack sequence forms attack
scenario Monitoring system calls may allow us to recogniech attack sequences. By
analyzing system calls directed from one processtjio another we can realize that the same
malicious system calls (with suspicious parametecsyr in the sequence consistent with attack
sequence and results of the system calls correspmrappropriate post-conditions in attack
scenario, consequently we can claim that infediaixes place.

Different attack scenarios can be composed a paod represented bgttack graphswhere
edges are system calls (with certain input parametnd vertices are post-pre-conditions. An
example of an attack scenario in its general fosmshowed in Figure 19. It shows five
intermediate conditions and starting condition tjuicis accessible) and final condition (victim
has been infected).
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Figure 19. Attack Graph

Knowing certain attack graphs one can detect aigospg activity on the graphs. A system call
in the given sequence would be mapped on an apptepdge of an attack graph if its pre-post
conditions are consistent with the endpoints (ged) of the corresponding edge. Mapped
system calls sequences on the attack graph repsesement suspicious scenario. We should
point out that each formed suspicious scenario evbale direction in terms of source (attacker)
and destination (target).

The attack graph most similar to current suspicisaguence may represent current attack
scenario. Knowing attack scenario (graph) one oam epredict the consequent activity of

malicious (infected) host and block certain systatis (relevant to the attack scenario) to be
invoked by adversary host.

To measure similarity between an attack graph audent (observed) suspicious graph
(scenario) we must introduce the concept of digtaBefore deriving the formula for distance
we should establish a measure of similarity of gh&phs, i.e. a metric of similarity. The more
two graphsG,,G, are similar the greater the metric value has tdHawing metric in analytical

form M(G,,G,), one can define the distance in the following form

d(G,G,) =(M(G,,Gy) - M(G,G,))/M(G,,G),  (22)
where M (G,,G,) is the maximum possible value of the metric fCH{[leGl.z The metric must
be indicative to special features of attack scenaimilarity. After embedding suspicious

2 Similarity metric of graphG, with itself
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sequence (graph) into the attack graph, we taketirg account following indicators to compute
the metric:
Quantity of common (consistent) vertices and eddedtack graph and suspicious graph
Layout position and importance of the consistemtiees and edges (system calls) in the
attack graph
Connectivity of the common vertices in the attacipd

Thefirst indicator shows closeness of the graphs strictly in termshafed vertices and edges.
The distance based on this indicator is analogousirtary Hamming distanceHowever, the
metric based only on the first term does not evaldlae importance of the consistent (shared)
vertices or edges. In other words, some systers aadly have key value in the attack scenario,
while others may not be so important and may besttubted by different system calls.
Therefore, we assign weights to individual edgethéattack graphs according to their positions
and importance what provides thecond indicatoffor the distance. For instance in Figure 20,
there are two different suspicious sequences (bmtid line) embedded on the same attack
graph (blue dashed line). Let's assume that systalinl is vital for virus replication (for
example OpenFileA, CreateFileA or WriteFile) tharstcall is assigned high weight. The sum of
weights of the edgdasacludedin suspicious sequences would be greater foreti@he, because

it includes the “heaviest” edges. This sum wouldstiute in some sense the metric between the
attack graph and the given sequence. Hence, thertdfiedded scenario is more similar to the
attack graph than the right one with respect toesyscalls importance.

Call 2 (param 2.1) Call 2 (param 2.1)

Call 1 (param 1.2) @ f ~ Call 1 (param 1.2)
\

s T <

T Call 6 (param 6.3) '

!
ICaII 1 (param 1.1)
|
/
r Call 4 (param 4.1) Call5 param 5.1) @ Call 4 (param 4.1) call5 (param 5.1)

(

N Condition 6
Call 2 (param 2. 2) Call 2 (param 2.2) CaII 3 (param 3.1)
1Call 3 (param 3.1

Figure 20. Two Embedded Suspicious Sequences on Bame Attack Graph

Call 6 (param 6.3)

Call 1 (param 1.1)

¥ Humming distance shows the number of differentnelets in two compared strings having equal length
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The third indicator used to compute the distance reflects the cohesi®gystem calls of the
suspicious sequence. While system calls and thegpitance are taken into account, it is also
reasonable to distinguish lengths of sequencesthiar words, suspicious system calls must be
strictly connected in terms of post-pre conditiohisus, after mapping the given sequence on an
attack graph, we consider the continuity of the ocwn part. Consider Figure 20 again. The total
number of edges in two cases is the same - fowte8ycalls of the left sequence are embedded
in one graph

G, (V,,E) V, ={Victimin accesgCondition 1234}, (23)
and system calls of the right sequence are disathamong two sub-graphs,

G (Va1 Ery) s Vi ={Condition 1, 2} (24)
and

Gr, Vryi Egy) » Vi, ={Condition 45,6} (25)

Thus, the second sequence has a gap in the scd@aliol (param 1.2)) what assures the
success of such an attack and makes it less sogpidn order to make the metric indicative of
the third term, we can increment the weight of gw@istem call of the given sequence to a value
proportional to the number of edges of a sub-grapthich the system call is contained.

Concluding the considerations stated above, onedeaive analytical form of the metric of
similarity between an attack gra@h(V,,E,) and a given (suspicious) scendzigVy, E4 )

M (GA’GS) = (W(e) +k xl.(e)) , (26)
el Es
where,
WA w(e) - weightof theedge
for " el E L(e):GisubE, el G G, (27)

k - sensitivity coefficient for the third indicat@cohesion degree)

L(e) - number of edges in the sub-graph in which ezligecontained

*Gg(Vs,Eq) T G,(V,,E,) - sub-graph representing scenario embedded aattenek graph

° Gf“b -i-th connected sub-graph of the sub-gréph(Vs, Es) , |G|E - number of edges in the gragh
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By adjusting coefficienk one can obtain the optimal indicative power of itinetric with respect

to the continuity of the suspicious scenario. Wedgif the edges in the attack scenarios must be
assigned by an expert. Apparently, such networkesyscalls as NtOpenFile, NtCreateFile,
NtReadFile and especially NtWriteFile must be assigheavy weight.

We should point out that distance is determinethieyfollowing formula:

M(G,,G,)

d(G,,G,) =1-
M(G,,G,)

(28)

By comparing the distance between current suspcsoenarios and different attack graphs with
some specified threshold, one can detect the mdeptocess at its replication stage. If several
attack graphs are close to the sequence in questitimat the distance is less than the threshold,
we take the closest one and derive a hypotheticabgbility of the suspicious host being
infected. The probability can be computed by thenida:

=—_=, (29)

where ¢ - threshold. By choosing the value of threshol@, ean adjust the level of desired
awareness.

4.4.2. Network Based Detection

As it has been stated above, by adjusting the rdistahreshold, one can achieve the optimal
level of suspiciousness. However, a high thresinodg result in the increased number of false
positives. In order to decrease false positivesnuet consider not only pair-wise connections of
server processes, but also the network of suchepses in terms of suspicious activity
inheritance. In other words, if we suspect a hodid infected, the destination of the activity of
the suspected host must be monitored to detectasiatbnormal behavior in terms of achieved
goals. By the goal of suspicious scenario we uridedsthe obtained post-conditions during the
scenario and of course the final condition of thele scenario. If the second host/process tends
to invoke a suspicious scenario of system callsidwlgenerally speaking can be different)
resulting in the same outcomes (conditions), we clamm that this host inherited the next
generation of the worm virus. Consider for exampleyw worm propagation topology presented
in Figure 21. Let’s assume that the replicatioma() scenario of a worm does not completely
match any known attack graph, but is close enoagine graph so that the distance is less than
the threshold# and the hypothetical probability of infection,20.6. Then hypothetical
probability of false alarm is 0.4, i.e.P(. =1- P,). Apparently, Figure 21 shows three

generations of suspicious activity. Assume that haavoked a suspicious sequence which first
was directed to hosts 2 and 3 (so the probabififialse alarm is for each direction is 0.4). Then
after some time, hosts 2 and 3 start invoking #@es sequence. This would be the second
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generation of suspicious activity. After that, hbsxhibits the same behavior, which constitutes
the third generation, so the probability of falesitive after the third generation would be:

= P(F,, Fus. Fsg) = P(FL)P(F,5)P(Fs6) = 04° = 0064. ° (30)

false

3 (Pfalse=0 064)

<3

@ Host 5
N 3 (Praie=0.064)
Host 4 @ (Pfalse—o 16)
Host 2 %@

Host 6

1 (Pfalsy @ \Zipfalse=o.16)
\/ Host 3 %@
Host 1 1 (Praise=0.4) Host 7

Figure 21. Slow Worm Generations

We should point out that if re-infection is not pide, slow worms would have a tree-like
propagation topology. Therefore, suspicious actignerated by these worms would also have
a tree topology. Such a graph (tree) provided bighis equal to corresponding false positive
probability will be called asuspicious activity graph (tree)lhus, knowing the number of
generations one can define the hypothetical prdibabf false alarm:

false mln{o P(X)l LI L} (31)

X L
where, L - is the set of various directed paths belongesuBpicious activity trees , ami{x) —
false alarm probability of suspicious sequenceasgmted by edge

The latter formula can be implemented using theaBtte First Search algorithm [21] on the
suspicious activity graph. The only modificationquaed by this algorithm is a labeling

technique. Each vertex should be labeled by theevalhich is equal to production of ancestor
label and weight of its edge.

6 P(F,,) - “local” probability that the host infected the host
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In summary, the so-called inter-host intrusion dieb@ is based on revealing suspicious system
calls relevant to virus replication and determinihg distance to certain attack graphs. The value
of the distance allows us to recognize infecteatg@ss. However, such method may lead to false
positives providing the suspicious scenario dogswaich any known attack graphs. In order to
avoid false positives, the network based detecisomproposed. Such detection is based on
monitoring the inherited activity. Then we compose-called suspicious activity tree and
calculate joint probability of false alarm that seeto be pretty dependable.

4.5. Intrusion Detection System Architecture

The architecture of the Intrusion detection sys(Hd®) is depicted in Figure 22. The system has
a server part and a host level. The server patddoee implemented on a server machine. The
IDS software installed on the server would solve thost computationally-intensive tasks. The
host level software would be cloned on every usachine covered by IDS and would collect
and forward some host data to the server.

The host level is represented by process data orosutbsystem. Every host served by the IDS
must have this subsystem activated. The subsyswiacts suspicious system calls with
parameters invoked by processes as well as sonmvadrsystem conditions and forwards them
to the IDS server. The subsystem consists of thhedules: process data monitor, conditions
reader and system call selector. The process da#on module listens to system calls invoked
by the processes and selects certain call typesenély checks out if the system call belongs to
the set of interest and passes them to other twiules of the subsystem.

The conditions reader module analyses the resulip@d parameters) of some system calls
provided by the process data monitor and recognspesial conditions used in pre-defined
attack scenarioSA condition is considered to be achieved, if dargystem call with particular
parameters has been successfully invoked. As sedheamodule determines special condition
of interest it sends it to the IDS server taggeth the time stamp.

The system call selector module is responsiblesébecting potentially suspicious system calls.
Pre-selected system calls, obtained from proceda dzonitor, are checked on having
“malicious” input parameters. If certain systeml t&ls suspicious parameters, the module sends
appropriate data signal to the IDS server. The digi@al reflects the system call itself, its input-
output parameters, and the time stamp.

Since each machine serviced by the IDS would hast level modules to be installed, the
module distribution between levels is such that K@&ware on the host level would consume
little amount of computational resources. The psscelata monitor module makes only
comparison operation thus consumes little resourBasce verification of input parameters

" Attack scenarios are described in the previousmsec
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implies comparing them against pre-defined setsuspicious input attributes, the system call
selector and condition reader modules could beequaimputationally efficient.

The server level is represented by four module$ éaplemented on the IDS server. Before
evolving the IDS, attack graphs must be composeahnbgxpert off-line. The graphs are stored in
the IDS server in a special succinct format thimaahg the system to use them directly without
decompressing. The system call superposition magalgs current suspicious system calls and
system conditions on all appropriate attack gragi suspicious scenarios. As input data, this
module uses system call signals and current systerditions reported by process data monitor
from each host in the IDS network. Based on this,ddae module generates new and updated
suspicious scenarios (mapped system calls alorfgsygtem conditions) which are saved in the
database. For example, when the module obtainstarsycondition from hostit looks trough
the suspicious scenario database and superposesrtiion on every consistent condition in
the scenarios if the condition appears later tharlast condition in the appropriate scenario. The
module also looks through attack graphs and mapscdimdition on appropriate attack graph
forming new suspicious scenarios.

Figure 22. IDS Architecture

Suspicious scenarios are stored during some pefibche and after this time elapses they are to
be erased. Such suspicious scenarios are formeydéoy monitored process invoking suspicious
system calls in any host serviced by the IDS. Suisps scenarios accompanied by the
appropriate time stamps and source/destinationrigess are forwarded to the distance

calculation module and suspicious activity treestarction module.
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Distance calculation module is responsible for cotimg the distance between mapped
suspicious scenario and appropriate attack grapalso defines a hypothetical probability of
corresponding process to be infected. Using soenaxoking time stamp and the direction
descriptor, the suspicious activity tree construcexognizes topologies of suspicious activity
inheritance and constructs so-called suspiciousiBctrees. These trees are aggregated up to
inter-hosed level and transmitted to intrusion diete Intrusion detector assigns weights to
every edge of the suspicious activity graph acemydo the hypothetical probability of process
being infected. Then it calculates the joint praligbof hypothetical false alarm of virus
propagation. The probability of false alarm is népd to the system supervisor and compared
against assigned threshold, if its value less tharthreshold, an intrusion alert is generated.

4.6. Simulation of Connectivity within a Network

The utilization of the experimental network testliedthe implementation and validation of the
developed software systems requires random e-gpel-hetwork generation. The algorithm
below provides the specified degree of connectiditstribution and desired clustering level.
Only three parameters are used as input variathlesaumber of nodes (users), extra probability
for double-path adjacent vertices, and extra pritibafor triple-path adjacent vertices.

4.6.1. Models of Topology of E-Mail Networks

E-mail traffic (network) can be represented by @aed, weighted multi-grap&(V,E , Wwhere
each vertex is represented by a user, and an édge is added if the usersi and v

corresponded through e-mail over specified peribdime. Such a graph is composed over
certain period of time in the way that every edgev has a weight which is equal to the

number of e-mails sent to from u during the periodThus, e-mail network can be simulated
through random graph generators. Before creatirapdom graph we must study features of e-
mail graph topology.

One of the most obvious ways to characterize thaplgrtopology is to obtain a degree
distribution. Degree distribution of a graph shalws number of nodes having the same degree
with respect to every possible degree value ofgtiag@h. Formally, it may be represented in the
following way:

D(x) = ) Ay (32)
uvVv
whereuv (1 ) degree of vertey, and
= ) (33)
’ O,xty

The topology of e-mail network graphs has beenistuth [22], [23]. According to the papers
the degree distribution of e-mail traffic graphdars Lavette’s law:

Nxx "

N-x+1

D(x) = cx (34)
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where D(n) the number of nodes of n-th degree,

N — maximum degree,
c,b - fitting parameters.

Based on the distribution we may generate randaplgrThere are two main approaches to
generate graph randomly [24, 25]. The first ona imndom graph generator which stars with
unconnected set of vertices and performs consedqointonnection of arbitrary vertices. The
second approach allows creating random graphs ssiegesmall world properties. A small
world type graph has high probability that two rigring vertices are incident. Thus, such
graph has big cluster coefficient:

_1 _ 2B L
c=— (C,,C,=———""ulV, (35)
V| k, Xk, -1

where C, - cluster coefficient of vertexi ,E,- number of edges of the sub-graph induced
(composed) by, incident vertices to the vertex. Small world graph can be constructed using

Watts-Strogatz’s [25] model or Kleinerg's model. #gaStrogats model starts from the ring with
consequently connected nodes and then adds news exdgmecting two randomly chosen
vertices.

The mentioned methods are relatively simple to enm@nt, nevertheless they do not provide
specified distribution. A method for generating dam graph with assigned distribution is
proposed in [24].

The following algorithm based on [24] allows uscteate a random grap@(V,E With degree
distributionD  ):

1. Compose a list containing every verten ¢/(u) times. ThugL|=  u(u)
uv

2. Permutate the lidt and split it into two equally sized sub-lidts, L,

3. Assign pairwise incident relation between composendf the lists
L) ® L,(@), i =1]L,|

The composed graph may have loops what does net fildce in e-mail network graphs.
Moreover, such graph may have more than two edgesegsing the same endpoints.

4.6.2. E-mail Network Generator

Algorithms described above do not meet all requéets of an e-mail network. In order to meet
these requirements, the graph must be construciaarding to connection probabilities of the
nodes. The connection probability from noddo vertexv reflects the probability that the user
u sends e-mail to the userand it depends on in-degree wf Thus, if useru sends an e-mail

to any user from the particular set of uthen the usewi S which has the maximal in-
degree, will have the highest probability to beapient. Using these ideas one can derive more
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sophisticated algorithm for composing random grapith does not have parallel edges and has
specified degree distribution:

L ={(un(u))lul v}5; (36)
Compose a set of tuples of vertices and their degabues
A=A

while Lt A&
Take any elemenin= (0,7(0))1 L
L:=L/m ; Subtract mfrom L

1(2)

Using 2 [IT L ®as probabilistic model of the sourte chose randomly?(T )

e
elements fronk and unite them into the sét,
A=A (u,Ls@) ; Form adjacent string for vertakx

Ls ={(0.n(0)- D1 (2(0) > (@)1 L}

L=(L/Ly) I:S ; Get rid of vertices which used all their degree

end

This algorithms creates undirected graph, but treply can be easily directed by choosing
directions of each edge. Directions can be chosswlamly or may follow some specified
distribution. For example, in e-mail networks thedas with very high degree usually have the
far larger number of out-edges with respect torthmber of in-edges (university information
services daily send thousands of e-mail to thents). Thus, a graph composed using the latter
method will have specified in-degree and out-degiis&ibution and will not have self-loops or
parallel edges.

The last property of the graph to be taken intamant is the clustering coefficient. According to
[22], an e-mail network exhibits not only power lalegree distribution but also small-world
properties. Some models for small-world propertiage been discussed above, but they do not
support the Lavalette’s degree distribution. Thenef we must modify the random graph
generator so that the graph would have desiredecring property. In order to do it, we must
change the probability model defined for each tteraof the loop. Since small-world properties

8 n(u) - degree of the vertax

%if 1 =(u,,n(y,)), thenl(2) = v(u,) the second component (degree) of the elemefithe seL
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assume neighboring nodes to be incident with higinebability, we can redefine probabilistic
model in the following way. Le® be a vector defining the probabilistic model usethe third
step of the loop of the algorithm, formally

1@ |1
= ——|ITL 37
|(2)| (37)
nmL
Then P,=(P+P,+R)/|P+P,+P) (38)

where P, - modified probabilistic model (vector)

XLI)_,i 1 D,
P,(i) = P(,) (39)
0,1l D,
- extra probability for second adjacent vertices

D, ={i |@#4® 1,W)(,1 L} (40)

- set of indexes of elements bofwhich vertices are connected to the given vedeshrough 2
edges (second adjacent vertices)

P-a, P(j)

x= 1o 41
1 (41)

a, - the input value that specifies the fractionaift probability which second adjacent vertices
pull toward themselves, and

P, - extra probability for third adjacent verticesifcbe defined analogically)

Thus, valuesa,,a, determine the amount of additional probability whiill be shared among

the second and third adjacent vertices respecti¥@yinstance inputg, = 025 makes the sum
of probabilities of second adjacent vertices equia¢és sum to their original probabilities plus

10 y—¥4® V - means there is double path connectirapdv

if 1.=(u,7(u)),thenl, @) =u, - first component (vertex) of i-th element of tetL
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additional 0.25. Adjusting coefficien#,,a, we can achieve any desired graph cauterization
coefficient. Actually higha,,a, may result in disconnected graph having severalated
cliques or semi-cliques. Figures 23, 24 presenneotivity matrix of a random graph and the
graph itself created by the discussed procedure pitocedure was run for 400 vertices
following Lavalette’s distribution ané, = 0.2, a, = .4n Figure 23 users (nodes) are indexed in

degree ascending order.

In Figure 24 the heaviest users (high degree vatefocused in the center, and light users are
shown on periphery.

One can see a very big cluster (bottom-right coraag some different little clusters, what is
natural for an e-mail network, so-called small-wopibperty [22, 23]. In Figure 24, the big
cluster is situated in the center. Moreover, themee some isolated pairs what is also matches
small-world properties.

Actually, the big cluster is represented by thersi$mving high degree value, usually they are
relevant to mass media, news or information serviggin an organization. Small clusters
reflect so-called communities of interests or comities of practice [26] which involve project
teams, cheaters, and hierarchical (administragireictures within particular department.

Figure 25 shows degree distributions of differenhd@n graphs and Lavalette’s curve
(theoretical distribution). One parameter of Lauv&lstcurve has been adjusted:=  .1Tlhus

the curve in our case has the following analytioar:

Y(x) = 76x 2% h (42)
15- x+1

The picture implies that the red graph,(= 04) matches theoretical distribution to a greater

extent. Thus, it can be inferred that greater amjgscoefficienta ensures the network to be
more realistic.
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5.0 CONCLUSION

Our research demonstrated that the anomaly propagadncept, combined with the application
of non-stationary Markov models, can provide a higvel of confidence in attack detection.
According to the experiments, we did not observefalsg positives in the global network level
sense. Also, anomaly propagation was detected at @ages of the worm attack, showing high
dependability and low detection inertia of the IDS.

Future work will be focused on problems white list laggiion and extensions for multipartite
(many sources) attack detection. A multipartiteckttaust be treated in a different way and may
not have tree-like propagation pattern. Propagationcept should be generalized to handle
multi source patterns.

65



6.0 REFERENCES

[1] Michael Cobb. “Know your enemy: Why your Web esitis at risk”,
URL: http://SearchSecurity.cqr8ecurity School, Accessed Jan, 2005

[2] V. Skormin, A. Volynkin, D. Summerville, J. MoronskRun-Time Detection of Malicious
Self-Replication in Binary Executablegburnal of Computer Securijtyol. 15, no. 2, pp. 273-
301, 2007.

[3] S. A. Hofmeyr, S. Forrest, and A. Somayaji. “Irsian detection using sequences of system
calls,” Journal of Computer Securityol. 6, no. 3, pp. 151-180, 1998.

[4] A Durante, R Di Pietro, LV Mancini. “Formal Spedaétion for Fast Automatic IDS
Training” Lecture Notes in Computer Scien2629:191-204, 2003.

[5] S. Stolfo, W. Lee, E. Eskin. “Modeling systemlls for ID with Dynamic Window Sizes”, In
Proceedings of the DISCEX Oune 2001.

[6] A. Liu, C. Martin. “A Comparison of System Cale&ture Representations for Insider Threat
Detection”. InProceedings of the 6th IEEE Information Assurawtakshop2005.

[7] G. Tandon, P. Chan. “Learning Useful System @dtfibutes for Anomaly Detection”, In
Proceedings of the FLAIRS Conferen2@05.

[8] M. Xu, C. Chen, J. Ying. “Anomaly detection basaud system call classificationJournal
of Software 15(3): pp. 391-403, 2004.

[9] C. Kruegel, D. Mutz, F. Valeur and G. Vigna. “On fbetection of Anomalous System Call
Arguments”.ESORICSQct. 2003.

[10] M. Bernaschi, E. Grabrielli, L. Mancini. "Op¢irag System Enhancements to Prevent the
Misuse of System Calls", InProceedings of the ACM Conference on Computer and
Communications Securitpp. 174 — 183, 2000.

[11] D. Kang, D. Fuller, and V. Honavar. “Learning cléisss for misuse and anomaly detection
using a bag of system calls representation” Phoceedings of 6th IEEE Systems Man and
Cybernetics Information Assurance Workshop (1Ap9g),118-125, 2005.

[12] T. Bowen, M. Segal, and R. Sekar “On preventingusions by process behavior
monitoring”. In Proceedings of the Workshop on Intrusion Detectiod Network Monitoring
1999.

[13] URL: http://www.metasploit.com

[14] Kurt JensenColoured Petri nets (2nd ed.): basic concepts, anais methods and
practical use volume 1, Springer-Verlag, Berlih996

66



[15] A. Volynkin and V. Skormin. "Large-scale Reconfigble Virtual Testbed for Information
Security Experiments,” ifProceedings of the 3rd International Conference T@stbeds and
Research Infrastructures for the Development of Nsvand Communitie€Orlando, FL, May

21-23, 2007.

[16] S. Stolfo, W. Lee, E. Eskin. “Modeling systemalls for ID with Dynamic Window Sizes”,
In Proceedings of the DISCEX Oune 2001.

[17] T. Bowen, M. Segal, and R. Sekar “On preventingyusions by process behavior
monitoring”. In Proceedings of the Workshop on Intrusion Detectiod Network Monitoring
1999.

[18] D. Malan and M. Smith “Exploiting Temporal Castency to Reduce False Positives in
Host-Based, Collaborative Detection of Worms” Pnoceedings of the ACM Workshop on
Recurring Malcode2006

[19] A. Tokhtabayev and V. Skormin, "Non-Stationabarkov Models and Anomaly
Propagation Analysis in IDSh proceedings IAS’QManchester, England, August 2007.

[20] J. Gottman, R. Kumar. “Sequential analysis. A dguifor behavioral researchers”,
Cambridge: Cambridge University Pre4990.

[21] M. Kurant, A. Markopoulou and P. Thiran, “On th&as of BFS (Breadth First Search)”,
International Teletraffic Congress (ITC 22010

[22] Holger Ebel, Lutz-Ingo Mielsch, and Stefan Buoofdt “Scale-free topology of e-mail
networks”,PHYSICAL REVIEW Edition 6635103(R) 2002

[23] Jean-Pierre Eckmann, Elisha Moses, and DandogiS'Entropy of dialogues creates
coherent structures in e-mail trafficPNAS,2004

[24] William Aiello, Fan Chung and Linyuan Lu “A Raaoh Graph Model for Massive Graphs”,
STOG 2000

[25] Watts, D. J. and S. H. Strogatz. Collective agies of 'small-world' networksNature
393440-42, 1990

[26] Joshua R. Tyler, Dennis M. Wilkinson, Bernardlo Huberman “Email as Spectroscopy:
Automated Discovery of Community Structure within Origations”, Communities and
Technologies2003

67



7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFRL Air Force Research Laboratory

DCA Dynamic Code Analyzer

IDS Intrusion Detection System)

CCAPP a non-graphical Norton Antivirus Process
LSASS Local Security Authority Subsystem Service

AFOSR Air Force Office of Scientific Research

API application programming interface
HLL high-level-language
PED Propagation Engine Detector

CPN, CP-net Colored Petri nets
FSM Finite State Machine

ED&E Executable Download and Execute
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